Abstract

To date, considerable experimental and theoretical focus has been placed on the spatial control of Surface Plasmon Polaritons (SPPs) using nanostructured surfaces; however, research aimed toward accessing the ultrafast dynamics of SPPs remains vastly unexplored. Despite this, SPPs have the potential to exhibit some of the fastest possible optical processes, while maintaining the advantage of nanoscale spatial manipulation. Here, we present an experimental and computational investigation of a system that provides access to the efficient excitation of broadband, propagating SPP modes. To achieve this, a surface array of tailor designed, reduced symmetry nanostructures has been fabricated to enable the required control of the plasmon dispersion map to match sub 20 fs pulses in the near infra-red. Using a combination of optical spectroscopy and frequency resolved optical gating techniques, complimented by finite element computational analysis, the efficient excitation of propagating broadband plasmonic modes is demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
    [CrossRef]
  3. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
    [CrossRef]
  4. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” N. J. Phys.10, 025031 (2008).
    [CrossRef]
  5. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
    [CrossRef] [PubMed]
  6. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
    [CrossRef]
  7. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
    [CrossRef]
  8. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
    [CrossRef]
  9. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
    [CrossRef]
  10. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett.26, 450–452 (2001).
    [CrossRef]
  11. R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
    [CrossRef]
  12. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
    [CrossRef]
  13. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
    [CrossRef] [PubMed]
  14. C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).
  15. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
    [CrossRef] [PubMed]
  16. W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
    [CrossRef] [PubMed]
  17. J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
    [CrossRef] [PubMed]
  18. S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
    [CrossRef]
  19. S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
    [CrossRef]
  20. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Pulses (Kluwer Academic Publishers, 2000).
    [CrossRef]
  21. J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric singl-slit,” Opt. Express19, 26463–26469 (2011).
    [CrossRef]
  22. B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
    [CrossRef]
  23. B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
    [CrossRef]
  24. A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express19, 6616–6622 (2011).
    [CrossRef] [PubMed]
  25. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A8, S87 (2006).
    [CrossRef]
  26. P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
    [CrossRef]

2012

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

2011

2010

W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

2009

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

2008

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
[CrossRef]

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” N. J. Phys.10, 025031 (2008).
[CrossRef]

2007

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
[CrossRef]

2006

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A8, S87 (2006).
[CrossRef]

2005

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
[CrossRef] [PubMed]

2004

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

2003

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
[CrossRef]

2002

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

2001

1999

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

1998

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

1982

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
[CrossRef]

Achermann, M.

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
[CrossRef]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Ashall, B.

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A8, S87 (2006).
[CrossRef]

Berndt, M.

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Bouillard, J.-S

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Chen, J.

Christ, A.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

Dickson, W.

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Dogariu, A.

Ebbesen, T. W.

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

Fainman, Y.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
[CrossRef] [PubMed]

Feldman, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Gao, H.

W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
[CrossRef] [PubMed]

Giessen, H.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

Gong, Q.

Gordon, J. P.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
[CrossRef]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Katzenberg, F.

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Kim, D-S.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Kleineberg, U.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

Kling, M. F.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

Krausz, F.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

Krenn, J. R.

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

Kuhl, J.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

Lei, M.

Leitner, A.

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

Lezec, H. J.

Li, Z.

Liao, P. F.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
[CrossRef]

Lienau, C.

R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
[CrossRef]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

Malomed, B.

Malyarchuk, V.

R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
[CrossRef]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Marini, A.

Müller,

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Müller, R.

R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
[CrossRef] [PubMed]

Park, D-J.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Park, J.W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).

Rehwald, S.

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Rokitski, R.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Runge, E.

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Schierbaum, K.

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Scholz, P.

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Schwieger, S.

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Skryabin, D. V.

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Steinmeyer, G.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Stibenz, G.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Stockman, M. I.

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” N. J. Phys.10, 025031 (2008).
[CrossRef]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

Tetz, K. A.

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
[CrossRef] [PubMed]

Thio, T.

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Pulses (Kluwer Academic Publishers, 2000).
[CrossRef]

Vilain, S.

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Vohnsen, B.

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

Wang, L. J.

Wang, Y.

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

Wokaun, A.

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
[CrossRef]

Wurtz, G. A.

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Xiao, J.

Yalcin, S. E.

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
[CrossRef]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

Yoon, Y-C.

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Yue, S.

Zayats, A. V.

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Zentgraf, T.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

Zerulla, D.

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

Zhou, W.

W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
[CrossRef] [PubMed]

ACS Nano

W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008).
[CrossRef]

Appl. Phys. Lett.

B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007).
[CrossRef]

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008).
[CrossRef]

J. Opt. A

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A8, S87 (2006).
[CrossRef]

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999).
[CrossRef]

N. J. Phys.

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” N. J. Phys.10, 025031 (2008).
[CrossRef]

Nat. Mat.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Nat. Photon.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003).
[CrossRef]

S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007).
[CrossRef]

B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009).
[CrossRef]

Phys. Rev. Lett.

T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004).
[CrossRef]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999).
[CrossRef]

A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998).
[CrossRef]

R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005).
[CrossRef] [PubMed]

Scientific Reports

J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012).
[CrossRef] [PubMed]

Other

R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Pulses (Kluwer Academic Publishers, 2000).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).

C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).

Supplementary Material (1)

» Media 1: AVI (605 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the excitation of propagating plasmonic pulses on the surface of the examined tailor designed periodic nanostructured surface. Sub 20 fs, near IR (centered at 800 nm), 88 MHz repetition rate pulses are incident on the sample (from the left). The propagating SPP pulses along with six elongated exemplary diffracted channels are illustrated.

Fig. 2
Fig. 2

Characteristics of a sub 20 fs laser pulse used for SPP excitation measured by SHG FROG. (A) Temporal and spectral intensity plot. (B) Spectral intensity profile (red) and spectral phase (green). (C) Temporal pulse intensity (blue) and temporal phase (yellow). Flat spectral and temporal phase profiles across the pulse bandwidth (as in (B) and (C)) indicate a transform limited pulse.

Fig. 3
Fig. 3

(A) Illustration of setup. Broadband laser light from a post compensated Ti:Sa laser incident on a goniometer housing the sample. The detector (interchangeable between a photodiode, spectrometer, or SHG FROG) can scan any diffraction order with change in θ, ϕ, or α. Note: In reality, the center of the sample lies at the fulcrum of the θ, ϕ and α rotations. (B) SEM image of an 8 by 4 μm section of the examined periodic nanostructured array.

Fig. 4
Fig. 4

Experimentally measured spectral and angular (θ in Fig. 3(A)) reflectivity map (normalized intensity according to color scale) for the (−1, 0) diffraction order, using sub 20 fs illumination pulses as in Fig. 2. Three plasmonic modes (A, B and C) of varying spectral and angular (θ) dependencies are identifiable as dark bands.

Fig. 5
Fig. 5

Experimentally measured dispersion maps for the (−1, 0) diffraction order for (i) 17.5 fs and (ii) 785 fs illumination pulses. Both pulse trains are delivered at a 95 MHz repetition rate with an average power of 250 mW. Dotted lines highlight the three plasmonic modes (A, B and C). Note: Fine detail differences are due to data acquisition resolution being lower for the longer pulse. ω is the illumination frequency, and kx is the x component of the illumination wavevector: k x = ω c sin ( θ ).

Fig. 6
Fig. 6

Simulated dispersion map. The plasmonic modes A, B and C match those found experimentally, with extra mode detail visible here due to an extended spectral range (e.g. modes D and E). The spectral limits of the experimental laser pulses are indicated by the horizontal dashed lines.

Fig. 7
Fig. 7

Simulated electric field strength ( E x 2 + E y 2 + E z 2 ) at an instant in time during the optical cycle for the mode A plasmon (color scale) including Poynting vectors (red arrows) indicating the direction of energy flow (i.e. SPP propagating direction). For this simulation, the spectral profile of the illumination matches that of the laser (as in Fig. 2(B)), and illumination of the structures is from the left at an angle of 32 degrees out of the plane of the page. Media included in the supplementary material illustrates the evolution of the electric field strength over a complete optical cycle ( Media 1).

Metrics