Abstract

We show that the interaction between a plasmonic and a magnetoplasmonic metallic nanodisk leads to the appearance of magneto-optical activity in the purely plasmonic disk induced by the magnetoplasmonic one. Moreover, at specific wavelengths the interaction cancels the net electromagnetic field at the magnetoplasmonic component, strongly reducing the magneto-optical activity of the whole system. The MO activity has a characteristic Fano spectral shape, and the resulting MO inhibition constitutes the magneto-optical counterpart of the electromagnetic induced transparency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  3. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
    [CrossRef]
  4. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
    [CrossRef] [PubMed]
  5. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  6. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
    [CrossRef]
  7. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
    [CrossRef] [PubMed]
  8. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
    [CrossRef] [PubMed]
  9. C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
    [CrossRef] [PubMed]
  10. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
    [CrossRef] [PubMed]
  11. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
    [CrossRef] [PubMed]
  12. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  13. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
    [CrossRef] [PubMed]
  14. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
    [CrossRef]
  15. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
    [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30(23), 3198–3200 (2005).
    [CrossRef] [PubMed]
  17. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
    [CrossRef] [PubMed]
  18. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011).
    [CrossRef] [PubMed]
  19. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  20. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
    [CrossRef] [PubMed]
  21. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
    [CrossRef] [PubMed]
  22. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
    [CrossRef] [PubMed]
  23. E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
    [CrossRef]
  24. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  25. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  26. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
    [CrossRef]
  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
    [CrossRef] [PubMed]
  28. J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
    [CrossRef] [PubMed]
  29. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
    [CrossRef]
  30. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
    [CrossRef] [PubMed]
  31. B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
    [CrossRef] [PubMed]
  32. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
    [CrossRef] [PubMed]
  33. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
    [CrossRef] [PubMed]
  34. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  35. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
    [CrossRef] [PubMed]
  36. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  37. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008).
    [CrossRef]
  38. Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express16(17), 13287–13295 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-17-13287 .
    [CrossRef] [PubMed]
  39. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
    [CrossRef]
  40. J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
    [CrossRef] [PubMed]
  41. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
    [CrossRef]
  42. B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
    [CrossRef]
  43. FDTD Solutions” software from Lumerical Inc. ( www.lumerical.com ).
  44. COMSOL Multiphysics®.
  45. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
    [CrossRef] [PubMed]
  46. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  47. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
    [CrossRef] [PubMed]
  48. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006).
    [CrossRef] [PubMed]
  49. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
    [CrossRef] [PubMed]
  50. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
    [CrossRef]
  51. T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
    [CrossRef]
  52. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  53. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express18(4), 3556–3567 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-4-3556 .
    [CrossRef] [PubMed]

2013 (2)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

2012 (6)

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
[CrossRef] [PubMed]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
[CrossRef]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

2011 (7)

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

2010 (8)

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express18(4), 3556–3567 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-4-3556 .
[CrossRef] [PubMed]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

2008 (9)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008).
[CrossRef]

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express16(17), 13287–13295 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-17-13287 .
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

2007 (2)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

2006 (3)

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

2005 (5)

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004 (2)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

2003 (3)

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Abrishamian, M. S.

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Agio, M.

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Åkerman, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Alaverdyan, Y.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Albaladejo, S.

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Antosiewicz, T. J.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
[CrossRef] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express18(4), 3556–3567 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-4-3556 .
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
[CrossRef]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Banthí, J. C.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Belotelov, V. I.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Bonanni, V.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Bonetti, S.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Caballero, B.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Calle, A.

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Carminati, R.

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Chen, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christ, A.

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Crozier, K.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

Crozier, K. B.

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Cubukcu, E.

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Cuevas, J. C.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
[CrossRef]

de Abajo, F. J. G.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Diehl, L.

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Dmitriev, A.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

Dolling, G.

Dregely, D.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Ekinci, Y.

Enkrich, C.

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Fromm, D.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Froufe-Pérez, L. S.

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

García, F.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Garcia-Martin, J. M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
[CrossRef]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express18(4), 3556–3567 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-4-3556 .
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
[CrossRef]

García-Martín, J. M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Gómez-Medina, R.

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

González-Díaz, J. B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Granpayeh, N.

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Hao, Z.-H.

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Hillenbrand, R.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Käll, M.

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008).
[CrossRef]

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
[CrossRef]

Kino, G.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Langhammer, C.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
[CrossRef] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

Lechuga, L. M.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Li, Q.-Q.

Linden, S.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Löffler, J. F.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Marinchio, H.

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express16(17), 13287–13295 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-17-13287 .
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Meneses-Rodríguez, D.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Moerner, W.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nanfang, Yu.

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Nogués, J.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Pakizeh, T.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25(4), 659–667 (2008).
[CrossRef]

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Pereira, S.

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Pirzadeh, Z.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Sáenz, J. J.

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
[CrossRef]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Schuck, P.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sepúlveda, B.

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Smythe, E. J.

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Solak, H. H.

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Torrado, J. F.

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

Vavassori, P.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Vogelgesang, R.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

Wadell, C.

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
[CrossRef] [PubMed]

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

Wang, Q.-Q.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Wegener, M.

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Yang, Z.-J.

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Zäch, M.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

Zhang, L.-H.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Zhang, Z.-S.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Zhou, J. F.

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

ACS Nano (5)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4(2), 819–832 (2010).
[CrossRef] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011).
[CrossRef] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Adv. Mater. (2)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–mask colloidal lithography,” Adv. Mater.19(23), 4297–4302 (2007).
[CrossRef]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks,” Adv. Mater.24(10), OP36–OP41 (2012).
[CrossRef] [PubMed]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater.1(1), 10–35 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Cubukcu, Yu. Nanfang, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron.14(6), 1448–1461 (2008).
[CrossRef]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116(38), 20522–20529 (2012).
[CrossRef]

Nano Lett. (7)

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett.11(12), 5333–5338 (2011).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

C. Wadell, T. J. Antosiewicz, and C. Langhammer, “Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas,” Nano Lett.12(9), 4784–4790 (2012).
[CrossRef] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10(7), 2721–2726 (2010).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single «bowtie» nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Nat Commun (1)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun4, 1599 (2013).
[CrossRef] [PubMed]

Nat. Mater. (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11(1), 69–75 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol.6(6), 370–376 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics4(2), 107–111 (2010).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (4)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72(16), 165409 (2005).
[CrossRef]

A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B71(20), 205116 (2005).
[CrossRef]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B85(24), 245103 (2012).
[CrossRef]

Phys. Rev. Lett. (7)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101(11), 116805 (2008).
[CrossRef] [PubMed]

B. Sepúlveda, J. B. González-Díaz, A. García-Martín, L. M. Lechuga, and G. Armelles, “Plasmon-induced magneto-optical activity in nanosized gold disks,” Phys. Rev. Lett.104(14), 147401 (2010).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64(10), 1107–1110 (1990).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Small (2)

A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small3(2), 294–299 (2007).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, and M. Käll, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small4(2), 202–205 (2008).
[CrossRef] [PubMed]

Other (3)

FDTD Solutions” software from Lumerical Inc. ( www.lumerical.com ).

COMSOL Multiphysics®.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Supplementary Material (2)

» Media 1: MP4 (3742 KB)     
» Media 2: MP4 (10193 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Spring model representing a two coupled masses system excited by an harmonic force, F(t), along x axis. Left side: uncharged masses. Right side-(Media 1): one of the masses (blue) is charged (q) and a static magnetic field (B) is applied along the z direction, inducing a Lorentz force, Fl(t), along the y direction. The y-movement is transferred to the other mass through the coupling. (b) Two interacting electric dipoles, representing two metallic disks, excited by an incident beam polarized along the x axis. Left side: No disk has magneto-optical activity and the reflected (Er) and transmitted (Et) light have the same polarization direction than the incident (Ei) light. Right side: one of the disks (blue) has magneto-optical activity and a static magnetic field (B) applied along the z direction induces a rotation of its electric dipole, which is transferred to the other dipole through the interaction. The rotation modifies the polarization direction of the reflected (Er) and transmitted (Et) light.

Fig. 2
Fig. 2

(a) Schematic drawing of the nanoresonators composed of a purely plasmonic Au disk and a magnetoplasmonic Au/Co superlattice disk separated by a dielectric spacer. (b) Polar Kerr loop of a characteristic sample. The presence of multiple Co/Au interfaces reduces the value of the magnetic field needed to saturate the nanodisks in the direction perpendicular to the sample plane. (c), (d) Cross section and planar view SEM pictures, respectively, of a representative sample. The images show the homogeneous and random distribution of nanoresonators and their truncated conical shape and internal structure.

Fig. 3
Fig. 3

(a) Extinction and (b) MO activity spectra of the nanoresonators as a function of SiO2 thickness. The different dashed horizontal lines indicate the zero value for each spectrum above the line. The 3D graphs on top of each panel show the results obtained from theoretical calculations of the same structures. The blue, green and red diamonds appearing in the experimental MO response for 20 nm SiO2 correspond to the spectral positions where the Ez field distributions are calculated [see Fig. 4].

Fig. 4
Fig. 4

(a) Calculated near field intensity of the Ez component for a nanoresonator with 20 nm SiO2 spacer in two planes above the top disk and below the bottom one, with the incident field polarized along the x direction and in the absence of an external magnetic field. This distribution reflects the excitation of two dipoles along the x direction. The insets indicate the corresponding charges and dipole orientations (indicated by the black arrows) according to the Ez distribution for the different cases. The red (blue) arrows in the insets represent the positive (negative) values of the Ez field component. (b) Difference of the Ez components for magnetic saturation along opposite directions in the same planes and for the same structure. This difference accounts for the effect of the applied magnetic field: The appearance of a dipole along the y direction for both the magnetoplasmonic (intrinsic dipole) and the plasmonic (induced dipole) disks. In both cases, the components for three different wavelengths labelled as diamonds in Fig. 3 are shown.

Fig. 5
Fig. 5

Fano resonance in the magneto-optical activity. (a) Experimental spectra of the MO activity for the structures with 20 nm and 50 nm SiO2 spacer, corresponding to interacting and non-interacting situations, respectively. For the interacting situation a clear Fano resonance shape is observed. The inset shows the difference between the two spectra, resulting in a narrow peak. (b) Theoretical MO activity spectra obtained for a structure with 20nm SiO2 spacer and for the same structure but without the upper metallic disk. The inset shows the MO spectra obtained using the simple point dipole model.

Fig. 6
Fig. 6

Oscillation amplitude as a function of the frequency of masses 1 (uncharged) and 2 (charged) along x- (left panel) and y- (right panel) direction by using a simple spring-mass model. Inset: Frame of a video showing schematically the evolution with the frequency of the masses’ oscillation for frequency values around the minimum in x-amplitude for the charged mass 2 (in the video, the y-amplitude has been multiplied by a factor 10, and the frequency has been scaled as ωvid = (1 + (ω-0.93) × 50)ω2 for clarity in the visualization) (Media 2).

Fig. 7
Fig. 7

Wavelength dependence of the normalized dipole magnitudes along the x- (left panel) and y- (right panel) directions obtained using a point dipole model.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

{ p 1x = E 0,1x D α 1 [ 1+G α 2xx ( e iδ G α 1 ) G 3 α 1 ( α 2xx 2 + α 2xy 2 ) e iδ ] p 1y = E 0,1x D G α 1 α 2xy [ e iδ +G α 1 ] p 2x = E 0,1x D [ α 2xx G 2 α 1 ( α 2xx 2 + α 2xy 2 ) ][ e iδ +G α 1 ] p 2y = E 0,1x D α 2xy [ e iδ +G α 1 ] ,
m 1 r ¨ 1 = F 1 k 1 r 1 k 12 ( r 1 r 2 ) B 1 r ˙ 1 m 2 r ¨ 2 = F 2 k 2 r 2 k 12 ( r 2 r 1 ) B 2 r ˙ 2 ,
B i = b i + F l i =[ b i 0 0 b i ]+[ 0 q B i q B i 0 ]
F l i =q B i [ 0 1 1 0 ]( r ˙ x r ˙ y ).
ω i 2 k i /m ω 12 2 k 12 /m Γ i B i /m( γ i ω c,i ω c,i γ i )
1 =( ω 2 ω 1 2 +iω Γ 1 ω 12 2 ) r 1 +( ω 12 2 ) r 2 2 =( ω 2 ω 2 2 +iω Γ 2 ω 12 2 ) r 2 +( ω 12 2 ) r 1
M( r 1 r 2 )[ ( ( Ω 1 2 ω 12 2 )I+ω ω c,1 σ 2 ) ω 12 2 I ω 12 2 I ( ( Ω 2 2 ω 12 2 )I+ω ω c,2 σ 2 ) ]( r 1 r 2 )=( 1 2 ),
{ x 1 = x D [ [ Ω 1 2 Ω 2 2 ω 12 2 ( Ω 1 2 + Ω 2 2 ) ]( Ω 2 2 2 ω 12 2 ) ω 2 ω c 2 ( Ω 1 2 ω 12 2 ) ] y 1 = x D [ iω ω c ω 12 2 ( Ω 1 2 2 ω 12 2 ) ] x 2 = x D [ [ Ω 1 2 Ω 2 2 ω 12 2 ( Ω 1 2 + Ω 2 2 ) ]( Ω 1 2 2 ω 12 2 ) ] y 2 = x D [ iω ω c ( Ω 1 2 ω 12 2 )( Ω 1 2 2 ω 12 2 ) ] ,
[ a 0 c 0 0 a 0 c c 0 d b 0 c b d ][ x 1 y 1 x 2 y 2 ]=A[ 1 0 1 0 ].
[ x 1 y 1 x 2 y 2 ]= A D [ a d 2 d c 2 + b 2 a b c 2 c 3 dca bca b c 2 a d 2 d c 2 + b 2 a bca c 3 dca c 3 dca bca d a 2 c 2 a a 2 b bca c 3 dca b a 2 d a 2 c 2 a ][ 1 0 1 0 ],
{ x 1 = A D [ ( c 2 ad )( cd )+ b 2 a ] y 1 = A D [ bc( ca ) ] x 2 = A D [ ( c 2 ad )( ca ) ] y 2 = A D [ ba( ca ) ] .
α 0 =V ε+I I+L( εI ) , α ˜ = α 0 Ii k 3 6π α 0 ,
G( r, r )= e ikR 4πR { ( kR ) 2 +ikR1 ( kR ) 2 I+ ( kR ) 2 3ikR+3 ( kR ) 2 RR R 2 }.
E i = E 0,i + ij N G( r i , r j ) p j .
α i =[ α i,xx α i,xy 0 α i,xy α i,xx 0 0 0 α i,zz ],
G( r 1 , r 2 )=G( r 2 , r 1 )=GI= e ikd 4πd ( kd ) 2 +ikd1 ( kd ) 2 I,
{ α 1 1 p 1 = E 0,1 +G p 2 = E 0,1x +G p 2 α 2 1 p 2 = E 0,2 +G p 1 = E 0,1x e iδ +G p 1
M( p 1 p 2 )[ α 1 1 GI GI α 2 1 ]( p 1 p 2 )=( E 0,1 E 0,1 e iδ ),
{ p 1x = E 0,1x D α 1 [ 1+G α 2xx ( e iδ G α 1 ) G 3 α 1 ( α 2xx 2 + α 2xy 2 ) e iδ ] p 1y = E 0,1x D G α 1 α 2xy [ e iδ +G α 1 ] p 2x = E 0,1x D [ α 2xx G 2 α 1 ( α 2xx 2 + α 2xy 2 ) ][ e iδ +G α 1 ] p 2y = E 0,1x D α 2xy [ e iδ +G α 1 ] ,

Metrics