Abstract

Individual metal nanoparticles represent an inexpensive and versatile platform to enhance the detection of fluorescent species at biologically relevant concentrations. Here we use fluorescence correlation spectroscopy to quantify the near-field detection volume and average fluorescence enhancement factors set by a single gold nanoparticle. We demonstrate detection volumes down to 270 zeptoliters (three orders of magnitude beyond the diffraction barrier) together with 60-fold enhancement of the fluorescence brightness per molecule.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas

Laura C. Estrada, Pedro F. Aramendía, and Oscar E. Martínez
Opt. Express 16(25) 20597-20602 (2008)

Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures

Jérôme Wenger, Davy Gérard, José Dintinger, Oussama Mahboub, Nicolas Bonod, Evgeny Popov, Thomas W. Ebbesen, and Hervé Rigneault
Opt. Express 16(5) 3008-3020 (2008)

Fluorescence quenching of osthole by silver nanoparticles

Hongyan Zhao, Feng Song, Jun Zhang, Fengxiao Wang, Jiadong Liu, and Yanling Liu
J. Opt. Soc. Am. B 30(9) 2387-2392 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, VCH-Wiley, Berlin/New York, 2002.
  2. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
    [Crossref] [PubMed]
  3. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
    [Crossref] [PubMed]
  4. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  5. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  6. E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
    [Crossref]
  7. M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
    [Crossref]
  8. L. C. Estrada, P. F. Aramendia, and O. E. Martinez, “10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas,” Opt. Express 16, 20597–20602 (2008).
    [Crossref] [PubMed]
  9. Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
    [Crossref]
  10. G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
    [Crossref] [PubMed]
  11. H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
    [Crossref]
  12. S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
    [Crossref]
  13. G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
    [Crossref] [PubMed]
  14. A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
    [Crossref]
  15. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
    [Crossref]
  16. C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
    [Crossref] [PubMed]
  17. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
    [Crossref]
  18. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [Crossref] [PubMed]
  19. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
    [Crossref]
  20. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
    [Crossref]

2013 (2)

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

2012 (6)

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
[Crossref]

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

2010 (1)

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

2009 (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2008 (2)

2007 (3)

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Acuna, G. P.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Anger, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[Crossref]

Aramendia, P. F.

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Bachelot, R.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Balan, L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Barbillon, G.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Baudrion, A.-L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Beater, S.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Bermúdez Ureña, E.

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[Crossref] [PubMed]

Bidault, S.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

Bonod, N.

Bouhelier, A.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Busson, M. P.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

Chaumet, P.

Choudhury, S. D.

S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
[Crossref]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Deeb, C.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Dintinger, J.

Ebbesen, T. W.

Ecoffet, C.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Enderlein, J.

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, VCH-Wiley, Berlin/New York, 2002.

Estrada, L. C.

Fan, S. H.

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

García-Parajó, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Gérard, D.

Gong, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Gong, Q. H.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Holzmeister, P.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Hou, L.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Huang, L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Itzhakov, S.

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Jain, P. K.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Jradi, S.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Keller, R. A.

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, VCH-Wiley, Berlin/New York, 2002.

Khatua, S.

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kinkhabwala, A. A.

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Kreuzer, M. P.

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Lakowicz, J. R.

S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
[Crossref]

Lalkens, B.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Lei, F.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Lei, F. H.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Lenne, P.-F.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Li, W. Q.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Liu, J.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Lu, G.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Lu, G. W.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Luo, C.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Luo, C. X.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Mahboub, O.

Manfait, M.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Marquette, C. A.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Martinez, O. E.

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Moerner, W. E.

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Möller, F. M.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Nevière, M.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[Crossref]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[Crossref] [PubMed]

Oron, D.

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Orrit, M.

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

Ouyang, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Perriat, P.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Plain, J.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Polman, A.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Popov, E.

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Quidant, R.

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Ray, K.

S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
[Crossref]

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[Crossref] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[Crossref]

Rolly, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

Roux, S.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Royer, P.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Soppera, O.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Stout, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

Tillement, O.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Tinnefeld, P.

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Wang, Q.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[Crossref] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A 23, 2342–2348 (2006).
[Crossref]

Yang, H.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Yorulmaz, M.

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

Yu, Z. F.

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Yuan, H.

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

Zander, C.

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, VCH-Wiley, Berlin/New York, 2002.

Zhang, T.

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

Zhang, T. Y.

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Zijlstra, P.

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

ACS Nano (1)

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

E. Bermúdez Ureña, M. P. Kreuzer, S. Itzhakov, H. Rigneault, R. Quidant, D. Oron, and J. Wenger, “Excitation enhancement of a quantum dot coupled to a plasmonic antenna,” Adv. Mater. 24, OP314–OP320 (2012).
[Crossref]

Angew. Chem. Int. Ed. (2)

M. P. Busson, B. Rolly, B. Stout, N. Bonod, J. Wenger, and S. Bidault, “Photonic engineering of hybrid metal–organic chromophores,” Angew. Chem. Int. Ed. 51, 11083–11087 (2012).
[Crossref]

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Ed. 125, 1255–1259 (2013).
[Crossref]

Chem. Phys. (1)

A. A. Kinkhabwala, Z. F. Yu, S. H. Fan, and W. E. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys. 406, 3–8 (2012).
[Crossref]

Chem. Phys. Lett. (1)

Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett. 503, 256–261 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

S. D. Choudhury, K. Ray, and J. R. Lakowicz, “Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities,” J. Phys. Chem. Lett. 3, 2915–2919 (2012).
[Crossref]

Nanoscale (1)

G. W. Lu, J. Liu, T. Y. Zhang, W. Q. Li, L. Hou, C. X. Luo, F. Lei, M. Manfait, and Q. H. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale 4, 3359–3364 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[Crossref]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Nature Nanotechnology (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations,” Nature Nanotechnology 8, 512–516 (2013).
[Crossref]

Nature Photon. (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Science (2)

G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, “Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas,” Science 338, 506–510 (2012).
[Crossref] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[Crossref] [PubMed]

Other (1)

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution - Methods and Applications, VCH-Wiley, Berlin/New York, 2002.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Gold nanoparticle on a glass substrate for enhanced single molecule analysis at high concentrations. (b) Finite-difference time-domain computation of excitation intensity enhancement near a 80 nm gold nanoparticle. The incoming light is horizontally polarized at a wavelength of 633 nm. (c) Bright-field optical image of 80 nm gold nanoparticles immobilized on a glass susbtrate. (d) Normalized experimental scattering cross-section of the nanoparticles (color-shaded curves, the label on top on the graphs indicates the nanoparticle diameter in nm), taken in pure water in the absence of the fluorescent species. The dashed and solid dark blue lines indicate the normalized absorption and emission spectra of Alexa Fluor 647 dye. The vertical lines indicate the 633 nm laser line used for excitation and the 650–690 nm region used for fluorescence detection.

Fig. 2
Fig. 2

(a) Fluorescence time trace and (b) FCS correlation functions for the reference confocal (blue) and the 80 nm nanoparticle (red). Alexa Fluor 647 concentration is 4.5 μM, with 200 mM of methyl viologen as chemical quencher. Thick lines are numerical fit of the data using Eq. (1). The insert displays normalized FCS traces.

Fig. 3
Fig. 3

Fluorescence enhancement (a) and near-field detection volume (b).

Fig. 4
Fig. 4

(a) Fluorescence correlation functions for increasing concentrations of fluorescent probes using a 100 nm diameter gold nanoparticle. (b) Number of detected molecules in the nanoparticle near-field versus the molecular concentration.

Tables (1)

Tables Icon

Table 1 Fitting parameter results for the FCS curves in Fig. 2(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = F ( t ) . F ( t + τ ) F ( t ) 2 = 1 + N * Q * 2 G d * ( τ ) + N 0 Q 0 2 G d 0 ( τ ) ( N * Q * + N 0 Q 0 ) 2
G d i ( τ ) = 1 ( 1 + τ / τ d , i ) 1 + s i 2 τ / τ d , i

Metrics