Abstract

We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absorption coefficient of the modulator, which enables larger modulation depth. We show that an extinction ratio of 46 dB/µm can be achieved, allowing for a 3-dB modulation depth in much less than one micron at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012).
    [CrossRef]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  3. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
    [CrossRef]
  4. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  5. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
    [CrossRef]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
    [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  9. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24(1), 477–494 (2006).
    [CrossRef]
  10. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
    [CrossRef]
  11. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011).
    [CrossRef] [PubMed]
  12. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
    [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005).
    [CrossRef]
  14. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  15. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  16. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
    [CrossRef]
  17. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
    [CrossRef] [PubMed]
  18. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012).
    [CrossRef] [PubMed]
  19. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
    [CrossRef]
  20. C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
    [CrossRef]
  21. V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
    [CrossRef]
  22. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “Surface plasmon polariton high-speed modulator,” CLEO: 2013, OSA Technical Digest, paper CTh5D.2 (2013).
  23. R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
    [CrossRef]
  24. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  25. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
    [CrossRef]
  26. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
    [CrossRef]
  27. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010).
    [CrossRef]
  28. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
    [CrossRef]
  29. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
    [CrossRef]
  30. G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
    [CrossRef]
  31. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
    [CrossRef] [PubMed]
  32. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
    [CrossRef]
  33. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
    [CrossRef] [PubMed]
  34. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
    [CrossRef]
  35. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
    [CrossRef] [PubMed]
  36. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
    [CrossRef]
  37. V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012).
    [CrossRef]
  38. A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009).
    [CrossRef]
  39. R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” US Patent 6 696 345, Feb. 24 (2004).
  40. J. K. Brask, T. E. Glassman, M. L. Doczy, and M. V. Metz, “Method for making a semiconductor device having a high-k gate dielectric,” US Patent 6 716 707, Sept. 30 (2004).
  41. A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
    [CrossRef]
  42. B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2003), paper ThD1.
  43. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
    [CrossRef]
  44. M.-S. Kwon, J.-S. Shin, S.-Y. Shin, and W.-G. Lee, “Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express20(20), 21875–21887 (2012).
    [CrossRef] [PubMed]
  45. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
    [CrossRef] [PubMed]
  46. A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
    [CrossRef] [PubMed]
  47. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
    [CrossRef]
  48. S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012).
    [PubMed]
  49. R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” US Patent 5 985 762, Nov. 16 (1999).
  50. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
    [CrossRef]
  51. T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
    [CrossRef]
  52. J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).
  53. M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. V. Stryland, Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw Hill, 1994).
  54. Sopra data sheet, http://www.sspectra.com/sopra.html .
  55. D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
    [CrossRef]
  56. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
    [CrossRef]
  57. H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
    [CrossRef]
  58. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
    [CrossRef]
  59. S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis & Designs (McGraw Hill, 2003).

2013

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

2012

M.-S. Kwon, J.-S. Shin, S.-Y. Shin, and W.-G. Lee, “Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express20(20), 21875–21887 (2012).
[CrossRef] [PubMed]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012).
[PubMed]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
[CrossRef]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
[CrossRef]

V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012).
[CrossRef]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
[CrossRef]

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012).
[CrossRef] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

2011

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011).
[CrossRef] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

2010

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010).
[CrossRef]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

2009

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
[CrossRef]

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009).
[CrossRef]

2008

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

2006

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24(1), 477–494 (2006).
[CrossRef]

2005

2004

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

2001

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

1998

1992

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

1990

T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
[CrossRef]

Albrektsen, O.

Atwater, H. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012).
[CrossRef]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Augendre, E.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Babicheva, V.

V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012).
[CrossRef]

Babicheva, V. E.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Berini, P.

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Breukelaar, I.

Briggs, R. M.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Cartier, E. A.

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009).
[CrossRef]

Chambers, S. A.

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
[CrossRef]

Charbonneau, R.

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Chen, X.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Chowdhury, R.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

de Lamaestre, R. E.

de Salvo, B.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

Delacour, C.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Droubay, T. C.

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
[CrossRef]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Emani, N.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Emboras, A.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

Espiau de Lamaestre, R.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

Fafard, S.

Fedeli, J. M.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Franzen, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Freude, W.

Fujiwara, T.

T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
[CrossRef]

Glembocki, O. J.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

Gosciniak, J.

Grosse, P.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Guler, U.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

Hahn, H.

Han, Z.

Huang, C.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

Ikonic, Z.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Kelsall, R. W.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
[CrossRef]

Kerber, A.

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009).
[CrossRef]

Keshmiri, H.

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

Kim, H.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

Kim, J.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
[CrossRef]

Kjaer, K.

Koos, C.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012).
[CrossRef] [PubMed]

Krenn, J. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Kulkova, I. V.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Kwon, M.-S.

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012).
[PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

Lahoud, N.

Lamond, R. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

Larsen, M. S.

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Lavrinenko, A.

V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012).
[CrossRef]

Lavrinenko, A. V.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Lee, W.-G.

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Leosson, K.

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Leroux, C.

Leufke, P. M.

Leuthold, J.

Li, Z. R.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

Lindenmann, N.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Lo, G. Q.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012).
[PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

Look, D. C.

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
[CrossRef]

Losego, M.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
[CrossRef]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

Malureanu, R.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Maria, J.-P.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Mattiussi, G.

Melikyan, A.

Mitomi, O.

Miyazawa, H.

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Mori, H.

T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Naik, G.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
[CrossRef]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Najar, A.

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

Nambiar, S.

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012).
[CrossRef] [PubMed]

Narayan, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Ni, X.

Nielsen, M. G.

Nikolajsen, T.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Noguchi, K.

Osofsky, M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Pickus, S. K.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

Piqué, A.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Prokes, S. M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Rhodes, C.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Sands, T. D.

Scales, C.

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Schimmel, T.

Schroeder, J. L.

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
[CrossRef]

Shin, J.-S.

Shin, S.-Y.

Singh, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Sorger, V. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Thomas, R.

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
[CrossRef]

Tiwari, P.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Ulrich, S.

Vincze, P.

Volkov, V. S.

Walheim, S.

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Watanabe, A.

T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
[CrossRef]

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Ye, J.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Yvind, K.

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012).
[CrossRef] [PubMed]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
[CrossRef]

Zheleva, T.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012).
[PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

Adv. Mater.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004).
[CrossRef]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992).
[CrossRef]

A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[CrossRef]

D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011).
[CrossRef]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).

IEEE Photon. J.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012).
[CrossRef]

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990).
[CrossRef]

IEEE Trans. Device Mater. Reliab.

A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009).
[CrossRef]

J. Appl. Phys.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010).
[CrossRef]

Metamaterials (Amst.)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011).
[CrossRef]

MRS Bull.

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012).
[CrossRef]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012).
[CrossRef]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

Nano Lett.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

Nanophotonics

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012).
[CrossRef]

Nat. Commun.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Nat. Photonics

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Opt. Commun.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005).
[CrossRef]

V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011).
[CrossRef]

G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

Photon. Nanostructures

R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012).
[CrossRef]

V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012).
[CrossRef]

Phys. Rev. Lett.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012).
[CrossRef] [PubMed]

Phys. Status Solidi RRL

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Science

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Other

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “Surface plasmon polariton high-speed modulator,” CLEO: 2013, OSA Technical Digest, paper CTh5D.2 (2013).

R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” US Patent 6 696 345, Feb. 24 (2004).

J. K. Brask, T. E. Glassman, M. L. Doczy, and M. V. Metz, “Method for making a semiconductor device having a high-k gate dielectric,” US Patent 6 716 707, Sept. 30 (2004).

R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” US Patent 5 985 762, Nov. 16 (1999).

B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2003), paper ThD1.

M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. V. Stryland, Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw Hill, 1994).

Sopra data sheet, http://www.sspectra.com/sopra.html .

S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis & Designs (McGraw Hill, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

General scheme of a compact modulator integrated with low-loss plasmonic waveguides. In this geometry, a stripe waveguide (grey) is used to bring a long ranging SPP mode to and from the modulator structure where an applied voltage modulates the SPP wave.

Fig. 2
Fig. 2

Illustration of the low-index (a, b, c) and high-index (d, e, f) multilayer modulator designs considered in this work. They are vertically divided by their configuration. The first column, GZO only structures (a) and (d), uses the GZO as both the plasmonic layer and the dynamic layer. The second column, single interface structures (b) and (e), introduces a thick TiN layer, which supports single interface SPPs and use the GZO layer to perform modulation. Finally, the third column of thin TiN structures (c) and (f), uses a thin stripe of TiN to support the long ranging SPP mode and the GZO layer to modulate the signal.

Fig. 3
Fig. 3

(a) GZO permittivity versus its carrier concentration, λ = 1.55 μm. The permittivity of the GZO layer was taken from [52] and a carrier concentration in the GZO was determined using a Drude-Lorentz model fitting: N0 = 9.426 × 1020 cm−3 (black dotted line). (b) TiN permittivity extracted from spectroscopic ellipsometry measurements.

Fig. 4
Fig. 4

Depiction of the mode profile illustrating the definition of the mode size. Due to the complexity of the structure and high concentration of electrical energy in the GZO layer, the traditional definition of the mode size cannot be utilized. Here we define the mode size as the distance/range, which encompasses 86% of the electric field energy, a condition similar to that of the 1/e definition for a single interface waveguide.

Fig. 5
Fig. 5

Multilayer structures along with graphs of the absorption coefficient (a, c) and mode size (b, d) versus GZO carrier concentration. Structures with high-index cladding (lower) show much higher absorption than structures with a low-index cladding (upper). The absorption maximum is accompanied by the highest mode localization, which occurs at the plasmon resonance for the structure. At lower carrier concentrations in the GZO, modes are increased due to smaller magnitude of its real permittivity.

Fig. 6
Fig. 6

Schematic of plasmonic modulators integrated with TiN stripe waveguides providing long range SPP propagation to and from the modulator (side view). To create the electrical isolation and prevent shorting of the modulator structure, the silicon layers are doped as shown. However, even with large doping required in the n + region, the losses associated with silicon are several orders of magnitude below the plasmonic losses and are neglected in this analysis.

Fig. 7
Fig. 7

Single interface coupling loss between the high-index waveguide and high-index “thin TiN” modulator sections versus carrier concentration in the GZO layer.

Fig. 8
Fig. 8

Example mode profiles in the integrated modulator geometry high-index “thin TiN”. Note that the field decay outside the stripe waveguide is slow and therefore appears constant in this graph. The carrier concentration in the GZO layer used for the calculations corresponds to the maximum absorption in the modulator, i.e. plasmonic resonance condition N = Non. Under these conditions the majority of the field is localized within the GZO layer.

Tables (2)

Tables Icon

Table 1 Performance comparison for planar modulator designs. In the following table all of the fundamental parameters for the device characterization are listed. Among them we have Non which is the on-state carrier concentration, αmax which is the maximum absorption in the on-state, αmin which is the minimum absorption in the off-state, ER is the extinction ratio as defined in Eq. (1), woff is the off-state mode size, neff is the effective index of the mode, and FoM is the figure of merit as defined in Eq. (2).

Tables Icon

Table 2 Summary of the performance of previous works in TCO based modulator structures. This is for means of comparison with the structures presented in this paper.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ER= α max α min ,
FoM= ER α min λ eff,off w off
γ= 4β β 1 2 ( β + 1 β 2 ) 2 | E 1z E 2z * dz | 2 E 1z E 1z * dz E 2z E 2z * dz ,

Metrics