Abstract

We report suppression of forward stimulated polariton scattering (SPS) in χ(2) structured media. Periodic poling in KTiOPO4 (KTP) leads to the destructive interference of phonon-polariton waves, which is responsible for the dependence of the SPS threshold on the poling period. This was confirmed by comparing the SPS thresholds in periodically-poled KTP (PPKTP) crystals with different poling periods. Further confirming the physical picture, we studied the changes in the Stokes power distribution as a function of the rotation angle of the PPKTP crystal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
    [CrossRef]
  2. P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
    [CrossRef]
  3. N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
    [CrossRef] [PubMed]
  4. C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 .
    [CrossRef]
  5. A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 .
    [CrossRef]
  6. T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 .
    [CrossRef]
  7. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
    [CrossRef]
  8. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
    [CrossRef]
  9. U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 .
    [CrossRef]
  10. B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
    [CrossRef]
  11. G. Strömqvist, V. Pasiskevicius, C. Canalias, and F. Laurell, “Suppression of forward stimulated Raman scattering in periodically poled nonlinear crystals,” ASSP 2009, Denver, CO February (2009). http://www.opticsinfobase.org/abstract.cfm?uri=ASSP-2009-TuC4
    [CrossRef]
  12. G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .
  13. S. S. Sussman, Microwave Laboratory, W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California, Report No. 1851, (1970).
  14. C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 .
    [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons, 1984), Chap. 10.
  16. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-14-9-2268 .
    [CrossRef]
  17. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B6(4), 622–633 (1989), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-6-4-622 .
    [CrossRef]
  18. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), Chapter 16.
  19. W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 .
    [CrossRef]

2012 (1)

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

2006 (2)

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
[CrossRef]

2005 (1)

T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 .
[CrossRef]

2002 (3)

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

1998 (1)

U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 .
[CrossRef]

1997 (1)

1989 (1)

1988 (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

1972 (1)

A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 .
[CrossRef]

1969 (1)

W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 .
[CrossRef]

1968 (1)

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 .
[CrossRef]

1965 (1)

C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 .
[CrossRef]

Avetisyan, Y.

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

Bahl, G.

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

Barker, A. S.

A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 .
[CrossRef]

Bierlein, J. D.

Bittner, B.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

Bréhat, F.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Buma, T.

T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 .
[CrossRef]

Canalias, C.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
[CrossRef]

Carmon, T.

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

Dainese, P.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Feurer, Th.

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

Fontatna, M. D.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Fragnito, H. L.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Garrett, C. G. B.

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 .
[CrossRef]

Henry, C. H.

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 .
[CrossRef]

C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 .
[CrossRef]

Hopfield, J. J.

C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 .
[CrossRef]

Ito, H.

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

Ito, R.

Johnston, W. D.

W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 .
[CrossRef]

Joly, N.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Kaminow, I. P.

W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 .
[CrossRef]

Kawase, K.

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

Khelp, A.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Kitamoto, A.

Knight, J. C.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Kondo, T.

Kugel, G. E.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Laude, V.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Laurell, F.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
[CrossRef]

Loudon, R.

A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 .
[CrossRef]

Maier, M.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 .
[CrossRef]

Mangin, J.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Marnier, G.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Marquardt, F.

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

Nedelec, C. C.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Nelson, K. A.

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

Norris, T. B.

T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 .
[CrossRef]

Pasiskevicius, V.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
[CrossRef]

Sasaki, Y.

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

Scherm, M.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

Schoedl, T.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

Schwarz, U. T.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 .
[CrossRef]

Shirane, M.

Shoji, I.

St. Russell, P.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Stoyanov, N. S.

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

Tomer, M.

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

Tyroller, T.

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

Vanherzeele, H.

Ward, D. W.

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

Wiederhecker, G. S.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Wyncke, B.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

Appl. Phys. Lett. (3)

T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 .
[CrossRef]

Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 .
[CrossRef]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 .
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .

J. Phys. Condens. Matter (1)

B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ .
[CrossRef]

Nat. Mater. (1)

N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf .
[CrossRef] [PubMed]

Nat. Phys. (2)

G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 .
[CrossRef]

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html .
[CrossRef]

Phys. Rev. (2)

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 .
[CrossRef]

W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 .
[CrossRef]

Phys. Rev. B (1)

U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 .
[CrossRef]

Phys. Rev. Lett. (1)

C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 .
[CrossRef]

Rev. Mod. Phys. (1)

A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 .
[CrossRef]

Other (4)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons, 1984), Chap. 10.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), Chapter 16.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and F. Laurell, “Suppression of forward stimulated Raman scattering in periodically poled nonlinear crystals,” ASSP 2009, Denver, CO February (2009). http://www.opticsinfobase.org/abstract.cfm?uri=ASSP-2009-TuC4
[CrossRef]

S. S. Sussman, Microwave Laboratory, W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California, Report No. 1851, (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A microscope picture of a PPKTP crystal that has multiple poled regions separated by single-domain areas. The black scale-bar at the corner corresponds to 100 µm. (b) A schematic description for the phase-matching condition of forward SPS. The Stokes beam propagates in a noncollinear direction at an internal angle α of about 1.8° with respect to the pump beam that propagates along the crystal x-axis. (c) The efficiency of forward SPS measured in the sample shown in (a). The pump propagates along the crystal x-axis, while translating the crystal in y-axis. The black spot in the figure corresponds to the beam size of 100 µm in diameter.

Fig. 2
Fig. 2

Ratio of the forward SPS threshold between poled and non-poled areas. Threshold was conveniently defined as the pump energy required to generate 0.88 µJ of Stokes, which corresponds to the Stokes energy at the threshold (10 µJ of pump) in the single-domain KTP.

Fig. 3
Fig. 3

Output power of the two Stokes beams as a function of the rotation angle of the periodic domain structure in PPKTP with a poling period of 500 µm (a) and 150 µm (b). The output power is normalized to the respective power of the Stokes beams generated for the pump propagation along the crystal x-axis, i.e. perpendicular to the ferroelectric domain walls. Red colour corresponds to the changes in the Stokes beam propagating to the left; black corresponds to that propagating to the right. The rectangles represent the measurements, while dots represent the simulation using Eq. (1a).

Fig. 4
Fig. 4

(a) A schematic illustration of SRS by polaritons in a rotated crystal. The polariton field propagating to the left builds up stronger than to the right after experiencing a longer effective period, causing the phase-matched Stokes beam propagating to the right to become the stronger one. (b) Gradual changes in Stokes power distribution as a function of the rotation angle of a PPKTP crystal with a 150 µm poling period. The central beam represents the pump, the beams on the side represent Stokes, and the numbers indicate the rotation angles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P NL ( ω s )( d E + d Q χ Q ) E p E pol + d Q 2 χ Q | E p | 2 E s
P NL ( ω pol )( d E + d Q χ Q ) E p E S

Metrics