Abstract

Low threshold lasers based on rare-earth elements have enabled numerous scientific discoveries and innovations in industry. However, pushing the threshold into the sub-microwatt regime has been stymied by a fundamental material phenomenon. Specifically, rare earth dopants form clusters which quench emission and reduce efficiency. Here, we fabricate resonant cavity lasers from neodymium-doped silica films containing alumina. The alumina prevents the clustering of the Neodymium, enabling the lasers to achieve thresholds of 530nanoWatts at room temperature.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
    [CrossRef] [PubMed]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002).
    [CrossRef] [PubMed]
  3. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).
  4. J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964).
    [CrossRef]
  5. J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
    [CrossRef]
  6. C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
    [CrossRef]
  7. J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
    [CrossRef]
  8. T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
    [CrossRef]
  9. Y. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, “Modeling rare-earth doped microfiber ring lasers,” Opt. Express14(16), 7073–7086 (2006).
    [CrossRef] [PubMed]
  10. E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991).
    [CrossRef]
  11. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2–3), 153–165 (1999).
    [CrossRef]
  12. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
    [CrossRef] [PubMed]
  13. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  14. H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
    [CrossRef] [PubMed]
  15. J. T. Lin, Y. X. Xu, J. X. Song, B. Zeng, F. He, H. L. Xu, K. Sugioka, W. Fang, and Y. Cheng, “Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining,” Opt. Lett.38(9), 1458–1460 (2013).
    [CrossRef] [PubMed]
  16. W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
    [CrossRef]
  17. B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
    [CrossRef]
  18. I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
    [CrossRef]
  19. A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989).
    [CrossRef]
  20. T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
    [CrossRef]
  21. E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988).
    [CrossRef]
  22. A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).
  24. S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
    [CrossRef]
  25. G. M. Hale and M. R. Querry, “Optical-constants of water in 200-nm to 200-mum wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  26. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  27. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
    [CrossRef] [PubMed]
  28. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012).
    [CrossRef] [PubMed]
  29. A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
    [CrossRef]

2013

2012

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012).
[CrossRef] [PubMed]

A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).

2010

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

2009

2007

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

2006

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
[CrossRef]

2002

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002).
[CrossRef] [PubMed]

2000

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

1999

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2–3), 153–165 (1999).
[CrossRef]

1996

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

1995

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

1994

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

1992

I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
[CrossRef]

1991

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991).
[CrossRef]

1990

W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
[CrossRef]

1989

A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989).
[CrossRef]

1988

E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988).
[CrossRef]

1973

1964

J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964).
[CrossRef]

Ainslie, B. J.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

Aitchison, J. S.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

Armani, A. M.

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
[CrossRef]

A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Ay, F.

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012).
[CrossRef] [PubMed]

Bartolacci, C.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Bebbington, J. A.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

Berry, A. J.

A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989).
[CrossRef]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Bonar, J.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

Cadier, B.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Cai, C.

Cheng, Y.

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Desurvire, E.

E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991).
[CrossRef]

Fang, W.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fujiyama, T.

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Geusic, J. E.

J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964).
[CrossRef]

Giles, E. R.

E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991).
[CrossRef]

Gilles, H.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Girard, S.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Gu, P.

Hale, G. M.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Hattori, K.

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

He, F.

Hibino, Y.

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

Hori, M.

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

Hsu, H. S.

Hufner, S.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002).
[CrossRef] [PubMed]

Jiang, X.

Jilavi, M. H.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

King, T. A.

A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kitagawa, T.

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

Koningstein, J. A.

J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964).
[CrossRef]

Krabill, R. H.

W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Laroche, M.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002).
[CrossRef] [PubMed]

Lefèvre-Seguin, V.

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2–3), 153–165 (1999).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Li, Y.

Lin, J. T.

Liu, X.

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012).
[CrossRef] [PubMed]

Mackenzie, J. D.

E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988).
[CrossRef]

Maker, A. J.

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
[CrossRef]

A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).

Mathur, S.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

Maxwell, G. D.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

Moreshead, W. V.

W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
[CrossRef]

Nogues, J. L. R.

W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
[CrossRef]

Ohmori, Y.

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

Pan, X.

Payne, S. A.

I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
[CrossRef]

Pollnau, M.

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

Pope, E. J. A.

E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988).
[CrossRef]

Querry, M. R.

Raimond, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Robin, T.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Romano, V.

B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Sasaki, M.

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

Shen, H.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

Song, J. X.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Sugioka, K.

Thomas, I. M.

I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
[CrossRef]

Tong, L.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

van Dalfsen, K.

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Veith, M.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

Vienne, G.

Weber, H. P.

B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
[CrossRef]

Wilhelm, B.

B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
[CrossRef]

Wilke, G. D.

I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

Worhoff, K.

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

Xu, H. L.

Xu, Y. X.

Yang, J.

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

Yokoyama, T.

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

Zeng, B.

Anal. Chem.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010).
[CrossRef]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010).
[CrossRef]

Appl. Phys. Lett.

A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013).
[CrossRef]

Chem. Mater.

S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002).
[CrossRef]

Electron. Lett.

J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995).
[CrossRef]

J. Lightwave Tech.

E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991).
[CrossRef]

J. Lightwave Technol.

T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994).
[CrossRef]

J. Non-Cryst. Solids

W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990).
[CrossRef]

B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003).
[CrossRef]

I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992).
[CrossRef]

T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991).
[CrossRef]

E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988).
[CrossRef]

J. Phys. D Appl. Phys.

A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989).
[CrossRef]

J. Visualized Exp.

A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).

Lasers Surg. Med.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002).
[CrossRef] [PubMed]

Nanoscale

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2–3), 153–165 (1999).
[CrossRef]

Phys. Rev.

J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964).
[CrossRef]

Phys. Rev. A

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Sensor Actuat. Biol. Chem.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).

Other

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Toroid microlaser and characterization setup. a) Scanning electron micrograph of as-fabricated toroid resonator. b) Schematic of characterization setup. A tapered fiber couples pump laser light into the resonator. The output is split and sent to a photodetector and optical spectrum analyzer, enabling simultaneous analysis of the transmission spectra and emitted light. c) PovRay rendering of tapered fiber and toroid. d) The tapered fiber must couple both the 765nm pump light and the emitted light near 900-940nm and 1050-1150nm.

Fig. 2
Fig. 2

Effects of alumina on material and device properties. a) The effective refractive index increases with increasing alumina concentration. Inset: top-view optical image of toroid microlaser coupled to taper. b) The quality factor also increases with increasing alumina concentration. Inset: representative transmission spectra of microlaser containing 2 mol% alumina (Q = 1.17x106).

Fig. 3
Fig. 3

Effects of alumina on lasing wavelength. a) Representative OSA spectra for a sample containing 1 mol% alumina, showing lasing near 900-940nm and 1050-1100nm. b) As the alumina concentration increases, more Nd ions are surrounded by alumina and the lasing wavelength range blue shifts.

Fig. 4
Fig. 4

Representative lasing threshold curve. The lowest observed threshold is 530nW in a toroidal microlaser containing 2 mol% alumina and 0.1 mol% Nd3+. Inset: Representative ~1082nm lasing observed just above the threshold.

Fig. 5
Fig. 5

Effects of alumina on lasing performance. As alumina concentration increases, the efficiency increases (a) and the lasing threshold decreases (b), due to alumina’s declustering and sensitizing effects.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E= ( 1 γ p )( 1κ ) ( 1 ( 1 γ p ) 1 2 κ 1 2 e α p πD/2 ) 2 1 e α p πD α p πD
at critical coupling 1 γ p +1 e α p πD 1 e α p πD α p πD
α p < Γ s σ s e N T .
Q> 2πn λ Γ s σ s e N T
P th = 1 Γ p h ν p σ s a 1 τ σ s a σ s e + α p Γ s σ s e N T 1 α p Γ s σ s e N T 1 E A

Metrics