Abstract

We investigate theoretically and experimentally Fano resonances in integrated silicon Bragg reflectors. These asymmetric resonances are obtained by interference between light reflected from the Bragg waveguide and from the end facet. The Bragg reflectors were designed and modeled using the 1D transfer matrix method, and they were fabricated in standard silicon wafers using a CMOS-compatible process. The results show that the shape and asymmetry of the Fano resonances depend on the relative phase of the reflected light from the Bragg reflectors and end facet. This phase relationship can be controlled to optimize the lineshapes for sensing applications. Temperature sensing in these integrated Bragg reflectors are experimentally demonstrated with a temperature sensitivity of 77pm/°C based on the thermo-optic effect of silicon.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  2. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
    [CrossRef]
  3. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
    [CrossRef]
  4. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express14(26), 12770–12781 (2006).
    [CrossRef] [PubMed]
  5. Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett.30(22), 3069–3071 (2005).
    [CrossRef] [PubMed]
  6. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett.32(7), 781–783 (2007).
    [CrossRef] [PubMed]
  7. A. C. Ruege and R. M. Reano, “Sharp Fano resonances from a two-mode waveguide coupled to a single-mode ring resonator,” J. Lightwave Technol.28(20), 2964–2968 (2010).
    [CrossRef]
  8. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  9. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  10. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2010).
  11. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  12. C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
    [CrossRef]
  13. N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express18(6), 5785–5790 (2010).
    [CrossRef] [PubMed]
  14. C.-M. Chang and O. Solgaard, “Asymmetric Fano lineshapes in integrated silicon Bragg reflectors” Conference on Lasers and Electro-Optics (CLEO) 2012, San Jose, CA. Paper JW4A.76.
    [CrossRef]
  15. C.-M. Chang and O. Solgaard, “Integrated silicon photonic temperature sensors based on Bragg reflectors with asymmetric Fano lineshapes” IEEE Proc. 9th Int’l Conf. Group IV Photonics, 114–116 (2012).
    [CrossRef]
  16. C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in bulk silicon” IEEE Optical Interconnects Conference 2012, Santa Fe, NM. Paper MC4.
  17. C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33(1), 32–40 (2013).
    [CrossRef]
  18. C.-M. Chang and O. Solgaard, “Double-layer silicon waveguides in standard silicon for 3D photonics” Conference on Lasers and Electro-Optics (CLEO) 2013, San Jose, CA. Paper JTu4A.52.
    [CrossRef]
  19. C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrodinger equation,” IEEE J. Quantum Electron.45(9), 1059–1067 (2009).
    [CrossRef]
  20. E. Hecht, Optics (Addison-Wesley, 2001)
  21. S. J. Orfanidis, Introduction to Signal Processing (Prentice-Hall, 1996).
  22. K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
    [CrossRef]
  23. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
    [CrossRef]
  24. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  25. X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
    [CrossRef]
  26. B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
    [CrossRef]

2013 (1)

C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33(1), 32–40 (2013).
[CrossRef]

2010 (5)

2009 (1)

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrodinger equation,” IEEE J. Quantum Electron.45(9), 1059–1067 (2009).
[CrossRef]

2008 (1)

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

2007 (1)

2006 (3)

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express14(26), 12770–12781 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

2003 (1)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
[CrossRef]

Bae, H. K.

Boeuf, F.

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Bogdanov, A.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Carriere, N.

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Chang, C.-M.

C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33(1), 32–40 (2013).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

Chin, M. K.

Chow-Chong, P.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
[CrossRef]

Darmawan, S.

Delage, A.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
[CrossRef]

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

Fathpour, S.

Fenouillet-Beranger, C.

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Gondarenko, A.

Gong, Q.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

Jalali, B.

Janz, S.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Jiang, X.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Jirauschek, C.

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrodinger equation,” IEEE J. Quantum Electron.45(9), 1059–1067 (2009).
[CrossRef]

Kim, G.-D.

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Lamontagne, B.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Li, B.-B.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Li, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett.30(22), 3069–3071 (2005).
[CrossRef] [PubMed]

Li, Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Lim, B. T.

Lipson, M.

Liu, K. Y.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Lu, Y.

Malloy, M.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Mario, L. Y.

Marshall, P.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

McNab, S. J.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Monfray, S.

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Park, C.-H.

Picard, M.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Poon, A. W.

Post, E.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Reano, R. M.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
[CrossRef]

Roth, D.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Ruege, A. C.

Sherwood-Droz, N.

Skotnicki, T.

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Solgaard, O.

C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33(1), 32–40 (2013).
[CrossRef]

Syrett, B.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Vlasov, Y. A.

Wang, P.

Wang, Q.-Y.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Xiao, L.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Xiao, Y.-F.

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

Yao, J.

Yap, K. P.

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Zhang, X.

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (4)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003).
[CrossRef]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett.74(22), 3338–3340 (1999).
[CrossRef]

B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett.96(25), 251109 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Jirauschek, “Accuracy of transfer matrix approaches for solving the effective mass Schrodinger equation,” IEEE J. Quantum Electron.45(9), 1059–1067 (2009).
[CrossRef]

IEEE Micro (1)

C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in standard silicon,” IEEE Micro 33(1), 32–40 (2013).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng.18(1), 015025 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (1)

K. P. Yap, B. Lamontagne, A. Delage, S. Janz, A. Bogdanov, M. Picard, E. Post, P. Chow-Chong, M. Malloy, D. Roth, P. Marshall, K. Y. Liu, and B. Syrett, “Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching,” J. Vac. Sci. Technol. A24, 812–816 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Solid State Electron. (1)

C. Fenouillet-Beranger, T. Skotnicki, S. Monfray, N. Carriere, and F. Boeuf, “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid State Electron.48(6), 961–967 (2004).
[CrossRef]

Other (8)

C.-M. Chang and O. Solgaard, “Double-layer silicon waveguides in standard silicon for 3D photonics” Conference on Lasers and Electro-Optics (CLEO) 2013, San Jose, CA. Paper JTu4A.52.
[CrossRef]

C.-M. Chang and O. Solgaard, “Asymmetric Fano lineshapes in integrated silicon Bragg reflectors” Conference on Lasers and Electro-Optics (CLEO) 2012, San Jose, CA. Paper JW4A.76.
[CrossRef]

C.-M. Chang and O. Solgaard, “Integrated silicon photonic temperature sensors based on Bragg reflectors with asymmetric Fano lineshapes” IEEE Proc. 9th Int’l Conf. Group IV Photonics, 114–116 (2012).
[CrossRef]

C.-M. Chang and O. Solgaard, “Monolithic silicon waveguides in bulk silicon” IEEE Optical Interconnects Conference 2012, Santa Fe, NM. Paper MC4.

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2010).

E. Hecht, Optics (Addison-Wesley, 2001)

S. J. Orfanidis, Introduction to Signal Processing (Prentice-Hall, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematics of the integrated silicon Bragg reflector. (b) 2D drawing (top view) of the integrated silicon Bragg reflector. This reflector is composed of a rib waveguide and periodic hole arrays. Vertical light confinement is obtained by underetching the waveguide, eliminating the need for SOI wafers.

Fig. 2
Fig. 2

Mode profiles and effective indices calculated in OptiFDTD. (a) TE polarization at AA’ in Fig. 1(b), (b) TE polarization at BB’, (c) TM polarization at AA’, and (d) TM polarization at BB’.

Fig. 3
Fig. 3

Modeling of the waveguide Bragg reflector using the 1D transfer matrix method. The region from the facet to the periodic structure is modeled to be a phase plate with thickness d and effective index neff; the rest of the region is modeled to be a DBR mirror with period Λ and an array of refractive indices that gradually change between neff1 and neff2.

Fig. 4
Fig. 4

Transfer matrix simulation of the reflected power for different phase plate thicknesses ranging from 650nm to 800nm. Different asymmetric lineshapes can be achieved by changing the phase plate thickness with a periodicity of about 200nm.

Fig. 5
Fig. 5

(a)-(e) Process flow of the waveguide Bragg reflectors fabricated by the GOPHER process. (f) SEM image of the fabricated device (cross-section).

Fig. 6
Fig. 6

Schematics of the testing setup for the silicon Bragg reflectors.

Fig. 7
Fig. 7

Reflection spectrum measurements (blue curves) and corresponding SEM images of four Bragg reflectors with different boundary conditions at the facet. The calculated reflection spectra are also plotted (red curves) to fit the measured data. The fitting algorithm is based on the effective indices and the extracted phase plate thicknesses from the SEM images.

Fig. 8
Fig. 8

Reflection spectrum measurements (blue curves) and the corresponding SEM images of one Bragg reflector with different FIB cutting at the facet (see Fig. 7(d) before the FIB cutting). FIB cutting: (a) 261nm, (b) 692nm, (c) 1090nm, and (d) 1209nm. The calculated reflection spectra based on the transfer matrix and the extracted phase plate thickness are also plotted (red curves).

Fig. 9
Fig. 9

Reflection spectrum of the Bragg reflector for temperatures ranging from 21.5°C to 34.6°C, (a) Experiments, and (b) Modeling using the 1D transfer matrix method.

Fig. 10
Fig. 10

Wavelength shift vs. temperature from measurements and the transfer matrix model. The extracted temperature sensitivity is 0.077nm/°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ B 4 ( 1 n eff1 + 1 n eff2 )
Δϕ= 2π λ B n eff 2d
M j =[ cos( k 0 n j t j ) isin( k 0 n j t j ) Z 0 n j isin( k 0 n j t j ) n j Z 0 cos( k 0 n j t j ) ]
S= d λ B,5 dT = λ B,5 n eff n eff T + λ B,5 n eff n eff T

Metrics