Abstract

A coherent random fiber laser based on stimulated Brillouin scattering as gain and Rayleigh scattering as distributed feedback mirror was constructed. Its frequency is stabilized by a high finesse narrow-band Fabry-Perot interferometer (FPI) to select lasing frequency within the gain bandwidth. The light confinement within single-mode fiber enhances largely the random lasing directionality, which enables a high-quality coherent random lasing in the weak scattering region by using a milliwatt continuous-wave pump source. The FPI in the laser configuration acts as a frequency selection on the Rayleigh feedback light, and thus the random lasing frequency was locked at one of its transmission peaks giving a relative frequency fluctuation of ~2.5 × 10−11 at 100 s. The measured frequency jitter is within ~~ ± 20 kHz over 3 hours, 3 dB linewidth is ~50 Hz and frequency noise is ~20 mHz/Hz1/2 at 10 kHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
    [CrossRef]
  2. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett.5, 212–215 (1967).
  3. H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News16(1), 24–29 (2005).
    [CrossRef]
  4. H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
    [CrossRef]
  5. H. Cao, “Review on latest development in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
    [CrossRef]
  6. R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
    [CrossRef]
  7. S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
    [CrossRef]
  8. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
    [CrossRef]
  9. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
    [CrossRef]
  10. G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
    [CrossRef]
  11. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
    [CrossRef]
  12. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004).
    [CrossRef]
  13. C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
    [CrossRef]
  14. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  15. A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
    [CrossRef]
  16. S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express21(18), 21236–21241 (2013).
    [CrossRef]
  17. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
    [CrossRef]
  18. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013).
    [CrossRef]
  19. M. Gagne and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express17(21), 19067–19074 (2009).
    [CrossRef]
  20. N. Lizaraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Mendez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009).
    [CrossRef]
  21. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
    [CrossRef]
  22. M. Pang, S. Xie, X. Bao, Y. Da-Peng Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012).
    [CrossRef]
  23. M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett.38(11), 1866–1868 (2013).
    [CrossRef]
  24. R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
    [CrossRef]
  25. R. W. Boyd, Nonlinear Optics (Academic, 2010).
  26. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002).
    [CrossRef]
  27. A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol.2(2), 76–82 (1984).
    [CrossRef]
  28. S. Xie, M. Pang, X. Bao, and L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express20(6), 6385–6399 (2012).
    [CrossRef]
  29. G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett.17(6), 420–422 (1992).
    [CrossRef]
  30. M. Li, S. Li, and D. A. Nolan, “Nonlinear fibers for signal processing using optical Kerr effects,” J. Lightwave Technol.23(11), 3606–3614 (2005).
    [CrossRef]
  31. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  32. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol.22(1), 57–64 (2004).
    [CrossRef]
  33. G. A. Cranch and G. A. Miller, “Fundamental frequency noise properties of extended cavity erbium fiber lasers,” Opt. Lett.36(6), 906–908 (2011).
    [CrossRef]
  34. S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
    [CrossRef]
  35. S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009).
    [CrossRef]
  36. D. W. Allan, “Time and frequency (time-domain) characterization, estimation and prediction of precision clocks and oscillators,” IEEE Trans. Ultr. Ferr. Contr.34(6), 647–654 (1987).
    [CrossRef]
  37. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
    [CrossRef]

2013

2012

2011

2010

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

2009

2008

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

2007

S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
[CrossRef]

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

2005

M. Li, S. Li, and D. A. Nolan, “Nonlinear fibers for signal processing using optical Kerr effects,” J. Lightwave Technol.23(11), 3606–3614 (2005).
[CrossRef]

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News16(1), 24–29 (2005).
[CrossRef]

H. Cao, “Review on latest development in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

2004

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol.22(1), 57–64 (2004).
[CrossRef]

2003

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
[CrossRef]

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

2002

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002).
[CrossRef]

1999

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

1994

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

1992

1990

R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef]

1987

D. W. Allan, “Time and frequency (time-domain) characterization, estimation and prediction of precision clocks and oscillators,” IEEE Trans. Ultr. Ferr. Contr.34(6), 647–654 (1987).
[CrossRef]

1984

A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol.2(2), 76–82 (1984).
[CrossRef]

1967

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett.5, 212–215 (1967).

1966

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Time and frequency (time-domain) characterization, estimation and prediction of precision clocks and oscillators,” IEEE Trans. Ultr. Ferr. Contr.34(6), 647–654 (1987).
[CrossRef]

Ambartsumyan, R. V.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

Ania Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Ania-Castañón, J. D.

Araujo, C. B.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

Babin, S. A.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Ball, G. A.

Bao, X.

Basov, N. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

Bayram, S. B.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

Boyd, R. W.

R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef]

Brito-Silva, A. M.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

Cao, H.

H. Cao, “Review on latest development in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News16(1), 24–29 (2005).
[CrossRef]

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Cavalieri, O.

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

Chaikina, E. I.

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Chen, L.

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Churkin, D. V.

Cranch, G. A.

G. A. Cranch and G. A. Miller, “Fundamental frequency noise properties of extended cavity erbium fiber lasers,” Opt. Lett.36(6), 906–908 (2011).
[CrossRef]

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009).
[CrossRef]

Da-Peng Zhou, Y.

Delavaux, J. M.

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Foster, S.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
[CrossRef]

Fotiadi, A. A.

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Fujita, K.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

Gagne, M.

Gamez, M. A. M.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

Geng, J.

Gold, M. P.

A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol.2(2), 76–82 (1984).
[CrossRef]

Gomes, A. S. L.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Gottardo, S.

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Harper, P.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Hartog, A. H.

A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol.2(2), 76–82 (1984).
[CrossRef]

Hinklin, T.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Hu, Y.

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Jiang, S.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Kaneda, Y.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Kashyap, R.

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Kryukov, P. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

Laine, R. M.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Leskova, T. A.

Letokhov, V. S.

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett.5, 212–215 (1967).

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

Li, M.

Li, S.

Lizaraga, N.

Lu, Y.

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Matos, C. J. S.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

Mendez, E. R.

Meneze, L. S.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

Meng, X.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Miller, G. A.

Milnes, M.

S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
[CrossRef]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Morey, W. W.

Murai, S.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

Nolan, D. A.

Pang, M.

Peyghambarian, N.

Podivilov, E. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004).
[CrossRef]

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
[CrossRef]

Puente, N. P.

Raikh, M. E.

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
[CrossRef]

Rand, S. C.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Rzazewski, K.

R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Shu, X.

Smirnov, S. V.

Spiegelberg, C.

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Sugavanam, S.

Tanaka, K.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

Tarasov, N.

Tikhomirov, A.

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
[CrossRef]

Toulouse, J.

Turitsyn, S. K.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004).
[CrossRef]

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
[CrossRef]

Vatnik, I. D.

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Wiersma, D. S.

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

Williams, G. R.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

Xie, S.

Yaroshchuk, O.

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Yeniay, A.

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Appl. Phys. Lett.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004).
[CrossRef]

IEEE J. Quantum Electron.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966).
[CrossRef]

S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003).
[CrossRef]

IEEE Trans. Ultr. Ferr. Contr.

D. W. Allan, “Time and frequency (time-domain) characterization, estimation and prediction of precision clocks and oscillators,” IEEE Trans. Ultr. Ferr. Contr.34(6), 647–654 (1987).
[CrossRef]

J. Lightwave Technol.

J. Phys. Math. Gen.

H. Cao, “Review on latest development in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005).
[CrossRef]

JETP Lett.

V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett.5, 212–215 (1967).

Nat. Photonics

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012).
[CrossRef]

Nature

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News16(1), 24–29 (2005).
[CrossRef]

Phys. Rev. A

R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990).
[CrossRef]

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002).
[CrossRef]

S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009).
[CrossRef]

Phys. Rev. Lett.

C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004).
[CrossRef]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012).
[CrossRef]

Waves Random Media

H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2010).

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Operation principle of the coherent Brillouin random fiber laser.

Fig. 2
Fig. 2

The Brillouin Stokes light is backscattered by the scattering centers in Rayleigh feedback fiber.

Fig. 3
Fig. 3

Simulation results of the coherent feedback in the random fiber laser: (a) simulated effective Rayleigh factor of RS fiber is the summation of scattering vectors from different scattering centers; (b) simulated <ES·ES> and one transmission peak of FPI as the function of Stokes light frequency. At resonant frequency, the constructive interference gives the random lasing spike.

Fig. 4
Fig. 4

Simulation results of the Brillouin RFL: (a) simulated laser output powers as the function pump powers for three different gain fiber lengths; stimulated power evolution of (b) pump and Brillouin Stokes light in SBS gain fiber and (c) Rayleigh pump and backscattered light in RS fiber.

Fig. 5
Fig. 5

Experimental setup of the coherent Brillouin RFL configuration and heterodyne method.

Fig. 6
Fig. 6

Performance of the coherent random lasing: (a) Measured output powers as the function of pump powers for three different gain fiber length; (b) Measure spectra at different pump powers, when the RF source was set to 10.7 GHz.

Fig. 7
Fig. 7

(a) Measured time-domain trace of the coherent Brillouin RFL; (b) Measured relative intensity noise spectra of the coherent Brillouin RFL (solid blue curve) and reference 3.5 kHz-linewidth fiber laser (dash red curve).

Fig. 8
Fig. 8

Experimental setup for the frequency noise measurement of lasers.

Fig. 9
Fig. 9

Normalized interferometric signal from port 2 of the 3 by 3 Michelson interferometer for the coherent Brillouin RFL (a) and reference fiber laser (b); (c) frequency noise spectra of the Brillouin RFL (black solid curve) and reference fiber laser (red dash curve).

Fig. 10
Fig. 10

Experimental setup for generation of two coherent Brillouin RFLs with lasing frequency different of ~42.1 MHz and measurement of the beat signal between those two RFLs.

Fig. 11
Fig. 11

(a) Beat signal of two RFLs was mixed down to low-frequency range with a perfect 42.1 MHz sine function, and recorded by a digital oscilloscope; (b) Power spectrum of the beat signal normalized to 42.1 MHz, measured by ESA with a span of 50 kHz and frequency resolution of 0.5 kHz.

Fig. 12
Fig. 12

Measured frequency jitter of the beat signal between two RFLs within 3 hours, when the time step was 0.5 s.

Tables (1)

Tables Icon

Table 1 Fiber parameters used in simulations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E R = j=1 T E S A j exp(i 4π n 2 f z j c )=R E S
E S ' | z 2 =0 =R E S | z 2 =0 exp.(i2πf n 1 L/c)
{ P P z 1 = α B P P g B P P P S P S z 1 = α B P S + g B P P P S + μ spon P P
{ P RP z 2 = α R P RP +r P R P R z 2 = α R P R +r P RP
{ P S ( z 1 =0)= P RP ( z 2 =0) P S ( z 1 = L B )= P R ( z 2 =0)

Metrics