Abstract

In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000).
    [CrossRef]
  2. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
    [CrossRef]
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997).
    [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  5. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
    [CrossRef]
  6. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
    [CrossRef]
  7. B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
    [CrossRef]
  8. B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
    [CrossRef]
  9. Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO, 2012, CM4B.
  10. Q. Liu, T. Tokunaga, and Z. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Opt. Express19(21), 20214–20223 (2011).
    [CrossRef] [PubMed]
  11. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37(3), 434–436 (2012).
    [CrossRef] [PubMed]
  12. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express21(9), 11141–11149 (2013).
    [CrossRef] [PubMed]
  13. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett.30(14), 1785–1787 (2005).
    [CrossRef] [PubMed]
  14. A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured Fiber Bragg Gratings,” J. Lightwave Technol.27(11), 1663–1697 (2009).
    [CrossRef]
  15. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
    [CrossRef]
  16. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
    [CrossRef] [PubMed]
  17. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  18. F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
    [CrossRef]
  19. B. P.-P. Kuo and S. Radic, “Fast wideband source tuning by extra-cavity parametric process,” Opt. Express18(19), 19930–19940 (2010).
    [CrossRef] [PubMed]
  20. J. Kakande, R. Slavik, F. Parmigiani, P. Petropoulos, and D. Richardson, “Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.9.
  21. Y. Gao, Y. Xie, and S. He, “Reducing the driving voltage of a phase modulator with cascaded four-wave-mixing processes,” J. Opt. Soc. Am. B27(11), 2360–2364 (2010).
    [CrossRef]
  22. G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express17(16), 13346–13353 (2009).
    [CrossRef] [PubMed]
  23. K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
    [CrossRef]
  24. O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
    [CrossRef]

2013 (2)

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express21(9), 11141–11149 (2013).
[CrossRef] [PubMed]

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

2012 (1)

2011 (2)

2010 (2)

2009 (2)

2008 (1)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

2007 (2)

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
[CrossRef]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

2001 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

2000 (3)

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000).
[CrossRef]

1997 (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

1996 (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Argyros, A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Baptista, J. M.

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

Bhattacharya, D. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Canning, J.

Carroll, K. E.

Chakraborty, A. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Chung, W. H.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

Cusano, A.

Dasgupta, K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Dong, X. Y.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

Fang, W.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

Frazão, O.

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Gangopadhyay, T. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Gao, Y.

Grattan, K. T. V.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000).
[CrossRef]

Groothoff, N.

Gu, F.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

Guan, B. O.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

He, S.

He, Z.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Ho, S. L.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

Iadicicco, A.

Kalli, K.

Kazovsky, L. G.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Kobayashi, Y.

Kou, J. L.

Kuo, B. P.-P.

Kuse, N.

Large, M. C.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Liu, Q.

Lu, G. W.

Lu, Y. Q.

Lyytikainen, K.

Majumder, M.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Marhic, M. E.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
[CrossRef]

Martelli, C.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Miyazaki, T.

Morais, R.

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

Ozawa, A.

Paladino, D.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Peng, G. D.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Putnum, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Qiu, S. J.

Radic, S.

Santos, J. L.

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

Sun, T.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000).
[CrossRef]

Tam, H. W.

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

Tam, H. Y.

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

Tao, X. M.

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

Tokunaga, T.

Tong, L.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Webb, D. J.

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

Wong, K. K. Y.

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
[CrossRef]

Woo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Xie, Y.

Xu, F.

Yu, H.

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

Zhang, C.

Electron. Lett. (1)

B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013).
[CrossRef]

K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003).
[CrossRef]

J. Lightwave Technol. (3)

A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured Fiber Bragg Gratings,” J. Lightwave Technol.27(11), 1663–1697 (2009).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators (1)

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000).
[CrossRef]

Sens. Actuators A Phys. (1)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008).
[CrossRef]

Other (2)

Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO, 2012, CM4B.

J. Kakande, R. Slavik, F. Parmigiani, P. Petropoulos, and D. Richardson, “Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the principle. (a): wavelength drift magnification; (b) temperature/strain sensitivity enhancement.

Fig. 2
Fig. 2

Experimental setup for sensitivity enhanced strain and temperature measurements which consists of the fiber laser system based on FBG and the frequency chirp magnifier system based on degenerated FWM. EDFA: Erbium doped fiber amplifier; CIR: circulator; PC: polarization controller; ISO: isolator; OC: optical coupler; TL: tunable laser; BPF: bandpass filter; HNLF: highly nonlinear fiber.

Fig. 3
Fig. 3

Measured optical spectra after degenerated FWM (a) and the zoom-in spectra for pump and idler-4 (b). The spectra indicating significantly magnified wavelength drift after 50-μm stretching over 1130-mm total fiber length.

Fig. 4
Fig. 4

Optical spectra for wavelength drift amplification with different amount of strain (0, 44.25, 88.50, 132.74, 176.99, 221.24 and 265.49 με).

Fig. 5
Fig. 5

Strain sensitivity enhancement due to FCM.

Fig. 6
Fig. 6

Optical spectra for the pump and idler-4 at the temperatures of 43.24 °C and 42.07 °C.

Fig. 7
Fig. 7

Optical spectra for wavelength drift magnification at different temperatures (70.2, 66.2, 56.8, 56.1, 48.1 and 44.5 μm).

Fig. 8
Fig. 8

Temperature sensitivity of the pump and idlers, indicating significantly enhanced sensitivity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E i =c A P 2 A S exp[j(2 w p w s )t+(2 ϕ p ϕ s )]

Metrics