Abstract

We investigate trapping geometries for cold, neutral atoms that can be created in the evanescent field of a tapered optical fibre by combining the fundamental mode with one of the next lowest possible modes, namely the HE21 mode. Counter propagating red-detuned HE21 modes are combined with a blue-detuned HE11 fundamental mode to form a potential in the shape of four intertwined spirals. By changing the polarization from circular to linear in each of the two counter-propagating HE21 modes simultaneously the 4-helix configuration can be transformed into a lattice configuration. The modification to the 4-helix configuration due to unwanted excitation of the the TE01 and TM01 modes is also discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
    [CrossRef] [PubMed]
  2. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
    [CrossRef]
  3. A. Yariv, Optical electronics, 3rd ed. (CBS College, New York1985), chap. 3.
  4. M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
    [CrossRef]
  5. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007).
    [CrossRef] [PubMed]
  6. Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
    [CrossRef]
  7. F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
    [CrossRef]
  8. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
    [CrossRef] [PubMed]
  9. F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
    [CrossRef]
  10. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
    [CrossRef]
  11. C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
    [CrossRef]
  12. G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
    [CrossRef]
  13. T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012).
    [CrossRef]
  14. A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013).
    [CrossRef]
  15. A. Yu. Okulov, “Cold matter trapping via slowly rotating helical potential,” Phys. Lett. A376, 650–655 (2012).
    [CrossRef]
  16. A. Yu. Okulov, “Superfluid rotation sensor with helical laser trap,” J Low Temp Phys171, 397–407 (2013)
    [CrossRef]
  17. D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012).
    [CrossRef]
  18. A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
    [CrossRef]
  19. M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
    [CrossRef]
  20. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express21(15), 18325–18335 (2013).
    [CrossRef] [PubMed]

2013

A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013).
[CrossRef]

A. Yu. Okulov, “Superfluid rotation sensor with helical laser trap,” J Low Temp Phys171, 397–407 (2013)
[CrossRef]

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express21(15), 18325–18335 (2013).
[CrossRef] [PubMed]

2012

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012).
[CrossRef]

A. Yu. Okulov, “Cold matter trapping via slowly rotating helical potential,” Phys. Lett. A376, 650–655 (2012).
[CrossRef]

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012).
[CrossRef]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

2011

A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
[CrossRef]

2010

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

2009

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

2008

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
[CrossRef]

2007

2006

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

2005

F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
[CrossRef]

2004

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

1991

Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
[CrossRef]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Baade, A.

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
[CrossRef]

Beadie, G.

Busch, Th.

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012).
[CrossRef]

Chakrabarti, S.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Deasy, K.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

Fatemi, F. K.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Giang Truong, V.

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

Goban, A.

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Hakuta, K.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Hennessy, T.

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012).
[CrossRef]

Hoffman, J. E.

Kimble, H. J.

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

Kimble, H.J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Lacröute, C.

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Le Kien, F.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Masalov, A. V.

A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Melentiev, P. N.

Minogin, V. G.

A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013).
[CrossRef]

Morinaga, M.

Morrissey, M. J.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Nayak, K. P.

Nic Chormaic, S.

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
[CrossRef]

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

O’Shea, D. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Orozco, L. A.

Ovichnikov, Yu. B.

Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
[CrossRef]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
[CrossRef]

Potoschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Rauschenbeutel, A.

D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
[CrossRef]

Ravets, S.

Reitz, D.

D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Rolston, S. L.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Shortt, B. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Shul’ga, S. V.

Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
[CrossRef]

Stern, N. P.

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

Stern, N.P.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

Ward, J. M.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Wu, Y.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

Yariv, A.

A. Yariv, Optical electronics, 3rd ed. (CBS College, New York1985), chap. 3.

Yu. Okulov, A.

A. Yu. Okulov, “Superfluid rotation sensor with helical laser trap,” J Low Temp Phys171, 397–407 (2013)
[CrossRef]

A. Yu. Okulov, “Cold matter trapping via slowly rotating helical potential,” Phys. Lett. A376, 650–655 (2012).
[CrossRef]

J Low Temp Phys

A. Yu. Okulov, “Superfluid rotation sensor with helical laser trap,” J Low Temp Phys171, 397–407 (2013)
[CrossRef]

J. Phys. B

Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991).
[CrossRef]

J. Phys. Soc. Japan

F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005).
[CrossRef]

JNOPM

A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011).
[CrossRef]

Laser Phys. Lett

A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003).
[CrossRef] [PubMed]

New J. Phys.

C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012).
[CrossRef]

G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008).
[CrossRef]

Opt. Commun.

M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012).
[CrossRef]

D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012).
[CrossRef]

Opt. Express

Phys. Lett. A

A. Yu. Okulov, “Cold matter trapping via slowly rotating helical potential,” Phys. Lett. A376, 650–655 (2012).
[CrossRef]

Phys. Rev. A

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012).
[CrossRef]

F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004).
[CrossRef]

Phys. Rev. Lett.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010).
[CrossRef] [PubMed]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012).
[CrossRef]

Rev. Sci. Instrum.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009).
[CrossRef]

Rev. Sci. Instrumm.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006).
[CrossRef]

Other

A. Yariv, Optical electronics, 3rd ed. (CBS College, New York1985), chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Potential in the radial direction for a 200nm fiber with 29 mW in the blue-detuned beam and three different powers in the red-detuned beam: 25mW (most shallow), 30 mW (intermediate depth) and 35 mW (deepest potential). Panels (b) and (c) show the shape of the potential in three dimensions when the counter propagating red-detuned modes have orthogonal circular or parallel linear polarization respectively.

Fig. 2
Fig. 2

(a) Intensity and polarization vectors for the HE21 mode with quasi-linear polarization, for a 500nm diameter fiber with 1064nm wavelength light. (b) and (c) show the TE01 and TM01 modes for the same parameters. The ring marks the fiber vacuum boundary. (d) shows the intensity in the azimuthal direction for the HE21 mode, at 100nm from the fiber surface, for four different polarization states where IL/R denotes intensity in left/right circularly polarized modes.

Fig. 3
Fig. 3

Potential shapes corresponding to three types of standing wave (a) the shape of the potential in three dimensions when the modes have identical circular polarizations (b) the shape of the potential in three dimensions when the modes are linearly polarized, (c) the shape of the potential in three dimensions when the modes have orthogonal circular polarizations

Fig. 4
Fig. 4

Intensity in the {r, ϕ} plane as a circularly symmetric standing wave is transformed into the lattice (upper row), a four helix standing wave is transformed into the lattice (middle row) and a circularly symmetric standing wave is transformed into the four helix standing wave (lower row).

Fig. 5
Fig. 5

The modification of the 4-helix potential as power is transferred from HE21 to (a) TE01 and TM01 in equal measure, (b) TE01 with the power in TM01 held constant and (c) TM01 with TE01 held constant. The ratios represent the fraction of power in each mode as TE01:TM01:HE21

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E r ( r , ϕ , z ) = A J l ( h a ) K l ( q a ) i β q 2 [ K l ( q r ) + B i ω μ l β r K l ( q r ) ] e i ( ω t + l ϕ β z ) ,
E ϕ ( r , ϕ , z ) = A J l ( h a ) K l ( q a ) i β q 2 [ i l r K l ( q r ) B ω μ β K l ( q r ) ] e i ( ω t + l ϕ β z ) ,
E z ( r , ϕ , z ) = A J l ( h a ) K l ( q a ) K l ( q r ) e i ( ω t + l ϕ β z ) ,

Metrics