Abstract

We demonstrate a single molecule detection approach to further extend the detection limit of correlation spectroscopic techniques through the Second Harmonic Generation Correlation Spectroscopy (SHGCS). SHG signals with high signal-to-noise ratio (SNR) were obtained from Barium titanium oxide, BaTiO3 (BTO) nanocrystals (NCs) upon excitation by a femto-second laser fitted to the scanning confocal bench. The fluctuation of SHG signals from BTO NCs in transparent and turbid media was examined and their diffusion time and particle concentration were evaluated by autocorrelation. Proof-of-concept measurements indicate that water-dispersed BTO NCs at different concentrations yield an average diffusion time of 6.43 ± 0.68 ms and the detection limit of SHGCS was found to be at 814 ± 41 fM, approximately 100 folds below the detection limit of fluorescence correlation spectroscopy (FCS). The dynamics of BTO NCs was demonstrated in serum with high SNR and selectivity to show its potential applicability in biomedicine. High SNR and the sub-picomolar detection limit positions SHGCS as an excellent technique for ultralow single particle or single molecule experimentation in a complex medium.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008).
    [CrossRef]
  2. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002).
    [CrossRef]
  3. W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
    [CrossRef] [PubMed]
  4. P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy: an introduction to its concepts and applications,” Experimental Biophysics Group, University of Gottingen.
  5. M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
    [CrossRef] [PubMed]
  6. K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
    [CrossRef] [PubMed]
  7. P. Schwille, E. L. Elson, and R. Rigler, eds., Fluorescence correlation spectroscopy. Theory and applications (Springer, 2001).
  8. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007).
    [CrossRef] [PubMed]
  9. L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
    [CrossRef] [PubMed]
  10. J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
    [CrossRef] [PubMed]
  11. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
    [CrossRef]
  12. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
    [CrossRef] [PubMed]
  13. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
    [CrossRef] [PubMed]
  14. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt.45(28), 7538–7542 (2006).
    [CrossRef] [PubMed]
  15. N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
    [CrossRef] [PubMed]
  16. J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009).
    [CrossRef] [PubMed]
  17. Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
    [CrossRef] [PubMed]
  18. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
    [CrossRef] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  20. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Dekker, 2003).
  21. A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
    [CrossRef]
  22. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  23. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
    [CrossRef] [PubMed]
  24. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  25. J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
    [CrossRef] [PubMed]
  26. J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
    [CrossRef] [PubMed]
  27. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
    [CrossRef] [PubMed]
  28. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
    [CrossRef] [PubMed]
  29. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
    [CrossRef] [PubMed]
  30. M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
    [CrossRef] [PubMed]
  31. A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
    [CrossRef]
  32. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991).
    [CrossRef] [PubMed]

2012 (1)

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
[CrossRef] [PubMed]

2010 (4)

J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
[CrossRef] [PubMed]

2009 (2)

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
[CrossRef] [PubMed]

A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008).
[CrossRef]

2007 (1)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

2003 (5)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

2002 (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002).
[CrossRef]

1999 (1)

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

1995 (1)

K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
[CrossRef] [PubMed]

1991 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991).
[CrossRef] [PubMed]

1983 (1)

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

1981 (1)

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
[CrossRef] [PubMed]

1974 (1)

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
[CrossRef] [PubMed]

1972 (1)

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
[CrossRef]

Aimable, A.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Al-Soufi, W.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Anderson, H. L.

J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
[CrossRef] [PubMed]

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Axelrod, D.

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
[CrossRef] [PubMed]

Berland, K. M.

K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
[CrossRef] [PubMed]

Bocchio, N. L.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Bonacina, L.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002).
[CrossRef]

Boucher, Y.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Bowen, P.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Brinkmeier, M.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

Brown, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Burghardt, T. P.

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Chen, J.

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
[CrossRef] [PubMed]

J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009).
[CrossRef] [PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Clays, K.

J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
[CrossRef] [PubMed]

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991).
[CrossRef] [PubMed]

Collins, H. A.

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

De Mey, K.

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

diTomaso, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Donnet, M.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Dörre, K.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

Eigen, M.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

Elson, E. L.

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
[CrossRef]

Felekyan, S.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Fraser, S. E.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Garai, K.

Geissbuehler, M.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Geissbuehler, S.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Grange, R.

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

Gratton, E.

K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
[CrossRef] [PubMed]

Gulamov, A. A.

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

Haustein, E.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007).
[CrossRef] [PubMed]

Hofmann, H.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Hsieh, C. L.

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
[CrossRef] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Ibragimov, E. A.

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

Irudayaraj, J.

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
[CrossRef] [PubMed]

J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009).
[CrossRef] [PubMed]

L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
[CrossRef] [PubMed]

Jain, R. K.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Jongen, N.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Jung, J.

A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008).
[CrossRef]

Kohl, M. M.

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002).
[CrossRef]

Kühnemuth, R.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Lasser, T.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Lemaitre, J.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Leutenegger, M.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Magde, D.

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
[CrossRef]

Maiti, S.

Maloney, J.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Märki, I.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

McKee, T.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Muralidhar, M.

Nag, S.

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Novo, M.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Orden, A. V.

A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008).
[CrossRef]

Pantazis, P.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Paulsen, O.

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Persoons, A.

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991).
[CrossRef] [PubMed]

Pluen, A.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Psaltis, D.

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
[CrossRef] [PubMed]

Pu, Y.

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

Redkorechev, V. I.

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

Reeve, J. E.

J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
[CrossRef] [PubMed]

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Reija, B.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Schwille, P.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007).
[CrossRef] [PubMed]

Seed, B.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Seidel, C. A. M.

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Shcheslavskiy, V.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Sinha, R.

L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
[CrossRef] [PubMed]

So, P. T.

K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
[CrossRef] [PubMed]

Stephan, J.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

Testino, A.

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

Thompson, N. L.

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
[CrossRef] [PubMed]

Thorley, K. J.

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Usmanov, T.

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

Varghese, L.

L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
[CrossRef] [PubMed]

Vidi, P. A.

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
[CrossRef] [PubMed]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Wolf, J. P.

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Wu, D.

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

ACS Nano (2)

J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010).
[CrossRef] [PubMed]

Biophys. J. (2)

N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981).
[CrossRef] [PubMed]

K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995).
[CrossRef] [PubMed]

Biopolymers (2)

A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974).
[CrossRef] [PubMed]

Chem. Eng. Technol. (1)

A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011).
[CrossRef]

J. Am. Chem. Soc. (2)

J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009).
[CrossRef] [PubMed]

W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Med. (1)

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991).
[CrossRef] [PubMed]

D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972).
[CrossRef]

PLoS ONE (1)

J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002).
[CrossRef]

Science (2)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983).
[CrossRef]

Other (4)

R. W. Boyd, Nonlinear Optics (Academic, 2003).

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Dekker, 2003).

P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy: an introduction to its concepts and applications,” Experimental Biophysics Group, University of Gottingen.

P. Schwille, E. L. Elson, and R. Rigler, eds., Fluorescence correlation spectroscopy. Theory and applications (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. The objective lens is an Olympus water immersion OLYMPUS UPLANAPO 60X /1.20; 3-D scanner is a nanometer-precise PZT stage controller where the objective is mounted; dichroic mirror is the 600 dcxr (Chroma Inc.); confocal pinhole size is 50um; different filters were inserted before the detector (APD: avalanche photodiode).

Fig. 2
Fig. 2

TEM (a) and Scanning SHG microscopy (c-f) of BTO nanocrystals deposited on a glass substrate using different band-pass filters (Chroma), (c), 460-50 filter; (d), 400-40 filter; (e), 480-10 filter; (f), 520-40 filter. Cross section distribution of below two BTO NCs in (c) is shown in (b); inset in (b) shows the excitation power dependent SHG signal. Unit of scale bar: counts/ms. Pixel dwell time is 0.6 ms.

Fig. 3
Fig. 3

Time traced SHG signal intensity and correlation spectroscopy of BTO nanocrystals dispersed in nanopure water at different concentrations. 25 pM: (a), (f); 12.5 pM: (b), (g); 5 pM: (c), (h); 2.5 pM: (d), (i); 0.5 pM: (e), (j). circle: experimental curve, solid line: theoretical fitting.

Fig. 4
Fig. 4

Estimated concentration of BTO NCs by SHGCS from theoretical fitting.

Fig. 5
Fig. 5

(a) Time traced SHG signal intensity (black) of BTO in serum and background signal intensity (red) of serum solution. (b) Normalized autocorrelation curve of BTO NCs in serum with different concentration. (c) Averaged diffusion time of BTO NCs in serum indicates that SHGCS is not affected by the turbid environment. (d) Time traced fluorescent intensity of serum, 10 nM Alex488, and a mixture. (e) Normalized autocorrelation curve of serum as well as Alex488 in serum at different concentration. (f) Averaged diffusion time obtained from (e) indicates that in FCS a turbid media will affect the fluorophore dynamics.

Fig. 6
Fig. 6

(a). Energy transition schematic of fluorescence (left) showing triplet state and SHG (right). (b). Time correlated single photon counting of fluorescence from rhodamine 123 (black) and SHG signals from BTO NCs (red). (c). Normalized FCS (black) of rhodamine 123 in water showing a triplet state effect under the 465 nm laser irradiation, and SHGCS (red) curve of BTO NCs in water showing the diffusion dynamics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G(τ)= δH(t)·δH(t+τ) H(t) 2
G(τ)= 2 N 0 · 1 1+2τ/ τ D · 1 (1+ ( r 0 / z 0 ) 2 (2τ/ τ D ))

Metrics