Abstract

We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, 445–510 (2003). doi:
    [CrossRef]
  2. T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
    [CrossRef]
  3. M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
    [CrossRef]
  4. U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
    [CrossRef] [PubMed]
  5. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, “Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 microm,” Opt. Lett.23(1), 58–60 (1998), doi:.
    [CrossRef] [PubMed]
  6. P. Palm, D. Hanke, W. Urban, and M. Mürtz, “Ultrahigh-resolution spectrometer for the 5-microm wavelength region,” Opt. Lett.26(9), 641–643 (2001), doi:.
    [CrossRef] [PubMed]
  7. M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
    [CrossRef]
  8. A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
    [CrossRef] [PubMed]
  9. F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
    [CrossRef] [PubMed]
  10. U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
    [CrossRef] [PubMed]
  11. A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
    [CrossRef]
  12. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett.30(5), 570–572 (2005), doi:.
    [CrossRef] [PubMed]
  13. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012), doi:.
    [CrossRef] [PubMed]
  14. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express19(7), 6296–6302 (2011), doi:.
    [CrossRef] [PubMed]
  15. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett.34(9), 1330–1332 (2009), doi:.
    [CrossRef] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36(12), 2275–2277 (2011), doi:.
    [CrossRef] [PubMed]
  17. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004), doi:.
    [CrossRef] [PubMed]
  18. S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003), doi:.
    [CrossRef] [PubMed]
  19. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007), doi:.
    [CrossRef] [PubMed]
  20. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008), doi:.
    [CrossRef] [PubMed]
  21. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett.30(23), 3141–3143 (2005), doi:.
    [CrossRef] [PubMed]
  22. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
    [CrossRef] [PubMed]
  23. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
    [CrossRef]
  24. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
    [CrossRef]
  25. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
    [CrossRef] [PubMed]
  26. D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb,” Opt. Express19(18), 17520–17527 (2011), doi:.
    [CrossRef] [PubMed]
  27. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
    [CrossRef]
  28. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
    [CrossRef] [PubMed]
  29. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
    [CrossRef] [PubMed]
  30. A. A. Mills, D. Gatti, J. Jiang, Ch. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37(19), 4083–4085 (2012), doi:.
    [CrossRef] [PubMed]
  31. R. Krems, W. Stwalley, and B. Friedrich, eds., Cold Molecules: Theory, Experiment, Application (CRC Press, 2009).
  32. J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
    [CrossRef]
  33. D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:.
    [CrossRef]
  34. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
    [CrossRef] [PubMed]
  35. O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kärtner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, and J. Ye, “Experimental implementation of optical clockwork without carrier-envelope phase control,” Opt. Lett.29(23), 2806–2808 (2004), doi:.
    [CrossRef] [PubMed]
  36. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
    [CrossRef]
  37. A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
    [CrossRef]
  38. A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express2(8), 1020–1025 (2012), doi:.
    [CrossRef]
  39. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
    [CrossRef] [PubMed]
  40. S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
    [CrossRef]
  41. S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett.33(13), 1413–1415 (2008), doi:.
    [CrossRef] [PubMed]
  42. G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett.35(4), 505–507 (2010), doi:.
    [CrossRef] [PubMed]
  43. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
    [CrossRef]
  44. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B14(10), 2481–2497 (1997), doi:.
    [CrossRef]
  45. N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
    [CrossRef]
  46. NIST, “Wavenumber calibration tables,” http://www.nist.gov/pml/data/wavenum/tables.cfm
  47. R. A. Toth, “Line strengths (900-3600 cm-1), self-broadened linewidths, and frequency shifts (1800-2360 cm-1) of N2O,” Appl. Opt.32(36), 7326–7365 (1993), doi:.
    [CrossRef] [PubMed]
  48. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 microm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett.21(13), 1000–1002 (1996), doi:.
    [CrossRef] [PubMed]

2012

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
[CrossRef]

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
[CrossRef] [PubMed]

A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012), doi:.
[CrossRef] [PubMed]

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express2(8), 1020–1025 (2012), doi:.
[CrossRef]

A. A. Mills, D. Gatti, J. Jiang, Ch. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37(19), 4083–4085 (2012), doi:.
[CrossRef] [PubMed]

2011

2010

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett.35(4), 505–507 (2010), doi:.
[CrossRef] [PubMed]

2009

2008

2007

2006

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

2005

2004

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004), doi:.
[CrossRef] [PubMed]

O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kärtner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, and J. Ye, “Experimental implementation of optical clockwork without carrier-envelope phase control,” Opt. Lett.29(23), 2806–2808 (2004), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

2003

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003), doi:.
[CrossRef] [PubMed]

2002

2001

1998

1997

1996

1993

Acef, O.

Adler, F.

Aellen, T.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Amy-Klein, A.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

Bakalov, D.

D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:.
[CrossRef]

Bartalini, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Biegert, J.

Bielsa, F.

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
[CrossRef] [PubMed]

Bisson, S. E.

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Blaser, S.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Bloom, G.

Borodin, A.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

Borri, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Boyland, A. J.

Bressel, U.

U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
[CrossRef] [PubMed]

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

Byer, R. L.

Cancio, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
[CrossRef] [PubMed]

Capasso, F.

Carras, M.

Castrillo, A.

D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb,” Opt. Express19(18), 17520–17527 (2011), doi:.
[CrossRef] [PubMed]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

Chardonnet, C.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
[CrossRef]

Cho, A. Y.

Clarkson, W. A.

Cossel, K. C.

Daussy, C.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
[CrossRef]

De Natale, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Di Domenico, G.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Di Francesco, J.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Douillet, A.

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
[CrossRef] [PubMed]

Duncker, H.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

Eikema, K. S. E.

Ernsting, I.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
[CrossRef] [PubMed]

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Erny, C.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Faist, J.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Faye, D.

Fejer, M. M.

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Fermann, M.

Fermann, M. E.

Foreman, S. M.

Frech, B.

Führer, T.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Galli, I.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Galzerano, G.

Gambetta, A.

Gatti, D.

Gérard, B.

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express2(8), 1020–1025 (2012), doi:.
[CrossRef]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Gianfrani, L.

Giovannini, M.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Giusfredi, G.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Gmachl, C.

Gohle, C.

Goncharov, A.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

Grain, C.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

Grisard, A.

Gubin, M. A.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett.30(5), 570–572 (2005), doi:.
[CrossRef] [PubMed]

Guinet, M.

Gutty, F.

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

Hall, J. L.

Hanke, D.

Hänsch, T. W.

A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
[CrossRef]

Hansen, M.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

Harris, J. S.

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Hartl, I.

Hilico, L.

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
[CrossRef] [PubMed]

Hofstetter, D.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Holzwarth, R.

Hoyler, N.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Huke, P.

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Hvozdara, L.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Ibsen, M.

Ippen, E. P.

Jiang, J.

Jimenez, J.

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

Jones, D. J.

Karr, J.-P.

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
[CrossRef] [PubMed]

Kärtner, F. X.

Keilmann, F.

Keller, U.

Kireev, A. N.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Konyashchenko, A. V.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Korobov, V. I.

D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:.
[CrossRef]

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

Kovalchuk, E. V.

Kryukov, P. G.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Kühlke, D.

Kulp, T. J.

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

Kuzucu, O.

Lallier, E.

A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express2(8), 1020–1025 (2012), doi:.
[CrossRef]

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett.35(4), 505–507 (2010), doi:.
[CrossRef] [PubMed]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett.33(13), 1413–1415 (2008), doi:.
[CrossRef] [PubMed]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Laporta, P.

Larat, C.

Leindecker, N.

Leitenstorfer, A.

Leveque, T.

Levi, O.

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Lopez, O.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

Lotze, R.

Ma, L. S.

Ma, L.-S.

Marandi, A.

Marangoni, M.

Marcadet, X.

Marian, A.

Marrel, T.

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
[CrossRef]

Maulini, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Mazzotti, D.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

Mefford, W.

Mills, A. A.

Mohr, Ch.

Moutzouris, K.

Mücke, O. D.

Mürtz, M.

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
[CrossRef] [PubMed]

Nevsky, A.

Palm, P.

Parameswaran, K. R.

Pedregosa Gutierrez, J.

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

Peters, A.

Petrukhin, E. A.

Picque, N.

A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
[CrossRef]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Ramponi, R.

Rein, B.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Rinkleff, R.-H.

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Roth, B.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

Ruehl, A.

Sahu, J. K.

Santarelli, G.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

Schiller, S.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
[CrossRef] [PubMed]

D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:.
[CrossRef]

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett.33(13), 1413–1415 (2008), doi:.
[CrossRef] [PubMed]

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Schilt, S.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Schliesser, A.

A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
[CrossRef]

Schneider, T.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

Schuldt, T.

Schunemann, P. G.

Shelkovnikov, A.

Shelkovnikov, A. S.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Shen, J.

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

Sivco, D. L.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

Sorokin, E.

Sorokina, I. T.

Strauß, N.

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
[CrossRef] [PubMed]

Tausenev, A. V.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Terazzi, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Thomann, P.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Thorpe, M. J.

Tombez, L.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Toth, R. A.

Touahri, D.

Tyurikov, D. A.

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

Urban, W.

Valenzuela, T.

Vasilyev, S.

Vodopyanov, K. L.

Walther, T.

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

Wicht, A.

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
[CrossRef] [PubMed]

Wong, F. N. C.

Ye, J.

Zhang, Z.

Ziskind, M.

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
[CrossRef]

Zondy, J.-J.

Appl. Opt.

Appl. Phys. B

M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:.
[CrossRef]

L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:.
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:.
[CrossRef]

S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:.
[CrossRef]

N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:.
[CrossRef]

Appl. Phys. Lett.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:.
[CrossRef]

Eur. Phys. J. D

M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:.
[CrossRef]

J. Appl. Phys.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:.
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. At. Mol. Opt. Phys.

D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:.
[CrossRef]

Nat. Photonics

A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:.
[CrossRef]

Nat. Phys.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:.
[CrossRef]

Opt. Eng.

S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:.
[CrossRef]

Opt. Express

Opt. Lett.

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36(12), 2275–2277 (2011), doi:.
[CrossRef] [PubMed]

A. A. Mills, D. Gatti, J. Jiang, Ch. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37(19), 4083–4085 (2012), doi:.
[CrossRef] [PubMed]

U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:.
[CrossRef] [PubMed]

A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012), doi:.
[CrossRef] [PubMed]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett.35(4), 505–507 (2010), doi:.
[CrossRef] [PubMed]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, “Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 microm,” Opt. Lett.23(1), 58–60 (1998), doi:.
[CrossRef] [PubMed]

J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 microm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett.21(13), 1000–1002 (1996), doi:.
[CrossRef] [PubMed]

P. Palm, D. Hanke, W. Urban, and M. Mürtz, “Ultrahigh-resolution spectrometer for the 5-microm wavelength region,” Opt. Lett.26(9), 641–643 (2001), doi:.
[CrossRef] [PubMed]

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:.
[CrossRef] [PubMed]

M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:.
[CrossRef] [PubMed]

S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003), doi:.
[CrossRef] [PubMed]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004), doi:.
[CrossRef] [PubMed]

O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kärtner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, and J. Ye, “Experimental implementation of optical clockwork without carrier-envelope phase control,” Opt. Lett.29(23), 2806–2808 (2004), doi:.
[CrossRef] [PubMed]

S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett.30(5), 570–572 (2005), doi:.
[CrossRef] [PubMed]

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett.30(23), 3141–3143 (2005), doi:.
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:.
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:.
[CrossRef] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007), doi:.
[CrossRef] [PubMed]

F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:.
[CrossRef] [PubMed]

S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett.33(13), 1413–1415 (2008), doi:.
[CrossRef] [PubMed]

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008), doi:.
[CrossRef] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett.34(9), 1330–1332 (2009), doi:.
[CrossRef] [PubMed]

Opt. Mater. Express

Phys. Rev. A

J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:.
[CrossRef]

Phys. Rev. Lett.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:.
[CrossRef] [PubMed]

U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:.
[CrossRef] [PubMed]

Phys. Status Solidi C

A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:.
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:.
[CrossRef] [PubMed]

Other

R. Krems, W. Stwalley, and B. Friedrich, eds., Cold Molecules: Theory, Experiment, Application (CRC Press, 2009).

NIST, “Wavenumber calibration tables,” http://www.nist.gov/pml/data/wavenum/tables.cfm

F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, 445–510 (2003). doi:
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

First-order QPM conditions for sum frequency generation (SFG, left) or difference frequency generation (DFG, right) between a C-band laser and MIR lasers emitting in the range 5 – 12 µm. Blue, Red (left vertical axes): 1st order QPM grating period vs. MIR laser wavelength at 25 °C and 200 °C temperature of the OP-GaAs crystal, respectively. The wavelength of the C-band laser is 1.57 µm for the solid blue and red lines. The dashed blue lines were calculated for C-band lasers at 1.54 µm and 1.60 µm, thus showing which λMIR range can be covered by tuning of the C-band laser. Black (right vertical axes): output wavelength of the up-converted radiation λSFG or λDFG for a C-band laser wavelength of 1.57 µm. The green lines show the minimum number of gratings required to cover the 5 – 12 µm range by temperature tuning of the crystal. For third-order QPM, the grating period must be multiplied by 3.

Fig. 2
Fig. 2

Schematic of the QCL spectrometer. Colors: pink: fiber laser at 1.5 µm, brown: QCL at 5.4 µm, blue: sum frequency at 1.2 µm. DM: dichroic mirror (high transmission 5 µm, high reflectivity for 1.2 µm, 1.5 µm); SOA: semiconductor optical amplifier; Pol: wire grid polarizer; PD: photodetector; OI: optical Faraday isolator; FC: fiber collimator. The frequency comb can either be phase-locked to the optical reference for narrow linewidth or be locked to the maser only, to provide for easy tuning.

Fig. 3
Fig. 3

Self-beat of the sum-frequency wave at 1.2 µm, between the input and the output light of the SOA. Blue: 1.8 s integration time, red: 100 averages (183 s).

Fig. 4
Fig. 4

Beat notes with the frequency comb which is stabilized to an optical reference. Left: Beat note of the 1.5 µm fiber laser and the frequency comb line to which it is weakly locked. Right: Beat note between the sum-frequency wave at 1.2 µm and a frequency comb line, for 1 s averaging time.

Fig. 5
Fig. 5

Stability of the QCL frequency over three hours and histogram of frequency values and Allan deviation (insets).

Fig. 6
Fig. 6

Spectrometer frequency scan over a range of 2.5 GHz at a wavelength of 5.36 µm, performed by scanning the repetition rate of the frequency comb. An absorption line of N2O was recorded simultaneously. Top: Grey line: Transmission through the gas cell versus frequency. A Voigt profile (red line) is fit to the central part of the peak (black part of the absorption peak). Bottom: measured QCL frequency minus linear fit of the frequency vs. time, showing the residual instability during the frequency scan.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ SFG = P SFG /( P Cband P QCL ).
Γ SFG =K ` SFG h SFG .
ν QCL = ( m 2 m 1 ) f rep ± Δ 2 ± Δ 1 .

Metrics