Abstract

A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
    [CrossRef]
  2. FCC, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” 2–48, Arp. 2002.
  3. M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
    [CrossRef]
  4. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
    [CrossRef]
  5. S. Pan and J. P. Yao, “UWB over fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
    [CrossRef]
  6. Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
    [CrossRef]
  7. Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
    [CrossRef]
  8. S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
    [CrossRef]
  9. J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
    [CrossRef]
  10. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010).
    [CrossRef] [PubMed]
  11. J. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett.22(16), 1193–1195 (2010).
    [CrossRef]
  12. T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
    [CrossRef]
  13. Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
    [CrossRef]
  14. L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, and N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett.38(4), 579–581 (2013).
    [CrossRef] [PubMed]
  15. L. Yan, W. Jian, J. Yu, K. Deming, L. Wei, H. Xiaobin, G. Hongxiang, Z. Yong, and L. Jintong, “Generation and performance investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM,” Opt. Express20(22), 24754–24760 (2012).
    [CrossRef] [PubMed]

2013 (2)

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, and N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett.38(4), 579–581 (2013).
[CrossRef] [PubMed]

2012 (2)

L. Yan, W. Jian, J. Yu, K. Deming, L. Wei, H. Xiaobin, G. Hongxiang, Z. Yong, and L. Jintong, “Generation and performance investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM,” Opt. Express20(22), 24754–24760 (2012).
[CrossRef] [PubMed]

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

2011 (1)

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

2010 (4)

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
[CrossRef]

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010).
[CrossRef] [PubMed]

S. Pan and J. P. Yao, “UWB over fiber communications: modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010).
[CrossRef]

J. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett.22(16), 1193–1195 (2010).
[CrossRef]

2009 (1)

J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
[CrossRef]

2008 (2)

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

2003 (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Beltran, M.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Ben Ezra, Y.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
[CrossRef]

Chang, Q.

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

Deming, K.

Dong, J.

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

Du, Y.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Fu, S.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010).
[CrossRef] [PubMed]

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

Gao, J.

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

Hara, S.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Hong, X.

Hongxiang, G.

Jensen, J. B.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Jian, W.

Jintong, L.

Kawanishi, T.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Kitayama, K.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Kuri, T.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Lembrikov, B. I.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
[CrossRef]

Li, J.

J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
[CrossRef]

Li, W.

Li, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

Li, Y.

Liang, Y.

J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
[CrossRef]

Lin, J.

Liu, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Liu, J. G.

Lorente, R.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

McKinney, J.

J. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett.22(16), 1193–1195 (2010).
[CrossRef]

Monroy, I. T.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Neumeyr, C.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Omiya, Y.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Ortsiefer, M.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Pan, S.

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

Ran, M.

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
[CrossRef]

Rodes, R.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Shum, P.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express18(15), 15870–15875 (2010).
[CrossRef] [PubMed]

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

Su, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

Tian, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

Wang, H.

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, and N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett.38(4), 579–581 (2013).
[CrossRef] [PubMed]

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Wang, L.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Wang, L. X.

Wei, L.

Wen, Y.

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

Wong, K. K.

J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
[CrossRef]

Wu, J.

Xiaobin, H.

Xu, K.

Yan, L.

Yao, J. P.

Ye, T.

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

Yong, Z.

Yu, J.

Yu, X.

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

Yu, Y.

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

Zhang, F.

Zhang, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

Zheng, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Zheng, J. Y.

Zhong, W.

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

Zhu, N.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

Zhu, N. H.

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

M. Beltran, J. B. Jensen, X. Yu, R. Lorente, R. Rodes, M. Ortsiefer, C. Neumeyr, and I. T. Monroy, “Performance of a 60-GHz DCM-OFDM and BPSK-impulse ultra-wideband system with radio-over-fiber and wireless transmission employing a directly-modulated VCSEL,” IEEE J. Sel. Areas Comm.29(6), 1295–1303 (2011).
[CrossRef]

IEEE Photon. Journal (1)

M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. Journal2(1), 36–48 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Q. Chang, Y. Tian, T. Ye, J. Gao, and Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett.20(19), 1651–1653 (2008).
[CrossRef]

S. Fu, W. Zhong, Y. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultra-wideband-over-fiber applications,” IEEE Photon. Technol. Lett.20(12), 1006–1008 (2008).
[CrossRef]

J. Li, Y. Liang, and K. K. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.21(17), 1172–1174 (2009).
[CrossRef]

J. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett.22(16), 1193–1195 (2010).
[CrossRef]

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, and J. Liu, “Widely-tunbale and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett.25(4), 335–337 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Y. Yu, J. Dong, X. Li, and X. Zhang, “Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion,” Opt. Commun.285(7), 1748–1752 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

FCC, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” 2–48, Arp. 2002.

T. Kuri, Y. Omiya, T. Kawanishi, S. Hara, and K. Kitayama, “Optical transmitter and receiver of 24 Ghz ultra-wideband signal by direct photonic conversion techniques,” Int. Topical Meeting Microwave Photonics Grenoble, France, Oct. 2006.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed MMW-UWB signal generator. LD: laser diode, PC: polarization controller, PPG: pulse pattern generator, LPF: electrical low-pass filter OBPF: optical band-pass filter, PD: photo-detector, OSC: oscilloscope, ESA: electrical spectrum analyzer.

Fig. 2
Fig. 2

Simulation results for the normalized waveforms and electrical spectra of the 25-GHz MMW-UWB pulses. (a) (b) A/B = 0.5, (c) (d) A/B = 1, (e) (f) A/B = 3 and (g) (h) A/B = 10.

Fig. 3
Fig. 3

(a) Waveform of the electrical control pulse, (b) the optical spectrum after the OBPF, (c) the waveform of the generated MMW-UWB pulse and (d) the electrical spectrum of the MMW-UWB pulse train.

Fig. 4
Fig. 4

(a): The optical spectrum after the OBPF, (b) the temporal shape of the generated MMW-UWB pulse and (c) the electrical spectrum of the MMW-UWB pulse train.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E 1 =Aexp[j2π( f o f)t]+Aexp[j2π( f o +f)t],
E 2 =Bexp(j2π f o t)sin[ πV / (2 V π ) ]exp(j2π f o t),
E 3 ={ Aexp[j2π( f o f)t] bit '0' Aexp[j2π( f o f)t]+Bexp(j2π f o t) bit '1' ,
I(t)= E 3 E 3 ={ A 2 bit'0' ( A 2 + B 2 )+2ABcos(2πft) bit'1' ,
I(t){ A 2 bit'0' A 2 +2ABcos(2πft) bit'1' ,

Metrics