Abstract

We present a silicon microring resonator with a lithium niobate top cladding and integrated tuning electrodes. Submicrometer thin films of z-cut lithium niobate are bonded to silicon microring resonators via benzocyclobutene. Integrated electrodes are incorporated to confine voltage controlled electric fields within the lithium niobate thin film. The electrode design utilizes thin film metal electrodes and an optically transparent electrode wherein the silicon waveguide core serves as both an optical waveguide medium and as a conductive electrode medium. The hybrid material system combines the electro-optic functionality of lithium niobate with the high index contrast of silicon waveguides, enabling compact low tuning voltage microring resonators. Optical characterization of fabricated devices results in a measured loaded quality factor of 11,500 and a free spectral range of 7.15 nm in the infrared. The demonstrated tunability is 12.5 pm/V, which is over an order of magnitude greater than electrode-free designs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
    [CrossRef] [PubMed]
  2. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
    [CrossRef] [PubMed]
  3. G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  4. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  6. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express17(24), 21986–21991 (2009).
    [CrossRef] [PubMed]
  7. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011).
    [CrossRef] [PubMed]
  8. S. Srinivasan, D. Liang, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Micro-ring resonator based electro-absorption modulators on the hybrid III-V on silicon platform,” In Group IV Photonics (GFP), 99–101 (2012).
  9. M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
    [CrossRef]
  10. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
    [CrossRef]
  11. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18(11), 11192–11201 (2010).
    [CrossRef] [PubMed]
  12. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  13. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
    [CrossRef]
  14. R. Kou, T. Okubo, S. Kurimura, H. Nakajima, J. Ichikawa, and K. Kondou, “Quasi-phase-matched wavelength converter with adhered ridge waveguide for hybrid silicon photonics,” in CLEO: 2008, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThl4.
  15. P. Rabiei, J. Ma, J. Chiles, S. Khan, and S. Fathpour, “High-Q lithium niobate microring-resonators on silicon,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1F.3.
  16. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett.36(7), 1119–1121 (2011).
    [CrossRef] [PubMed]
  17. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express20(4), 4032–4038 (2012).
    [CrossRef] [PubMed]
  18. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
    [CrossRef]
  19. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011).
    [CrossRef] [PubMed]
  20. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  21. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
    [CrossRef]
  22. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express15(13), 8401–8410 (2007).
    [CrossRef] [PubMed]
  23. M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
    [CrossRef]
  24. E. D. Palik, ed., Handbook of Optical Constants of Solids, vol. 1 (Academic Press, 1998).
  25. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
    [CrossRef]
  26. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  27. M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express20(1), 164–172 (2012).
    [CrossRef] [PubMed]
  28. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010).
    [CrossRef] [PubMed]
  29. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
    [CrossRef] [PubMed]

2012 (3)

2011 (6)

2010 (4)

2009 (4)

2007 (2)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

2006 (1)

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2002 (1)

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

2000 (1)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

1995 (1)

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
[CrossRef]

Asghari, M.

Atwater, H. A.

Baehr-Jones, T.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bidstrup, S. A.

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bowers, J. E.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Briggs, R. M.

Brimont, A.

Ceiler, M. F.

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
[CrossRef]

Chakravarty, S.

Chen, H.-W.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Chen, L.

Chen, R. T.

Cunningham, J. E.

Dahlem, M. S.

Dalton, L.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Ding, R.

Dong, F.

Dong, P.

Dumon, P.

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Fang, A. W.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Fedeli, J. M.

Fedeli, J.-M.

Feng, D.

Feng, N.-N.

Fournier, M.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Gardes, F. T.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Gardes, F. Y.

Gould, M.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Gutmann, R. J.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

Heck, M. J. R.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Hochberg, M.

Holzwarth, C. W.

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Huang, J.

Huang, S.

Ippen, E. P.

Jazbinšek, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

Jen, A. K.-Y.

Kärtner, F. X.

Khilo, A.

Kim, G.-D.

Kim, W.-J.

Koch, B. R.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Kohl, P. A.

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
[CrossRef]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Krauss, T. F.

Krishnamoorthy, A. V.

Lee, S.-S.

Lee, W.-G.

Lee, Y. S.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Li, G.

Liang, D.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Liang, H.

Liao, S.

Lin, C.-Y.

Lipson, M.

Lira, H. L. R.

Lu, J.-Q.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

Luo, J.

Luo, Y.

Manipatruni, S.

Marris-Morini, D.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Niklaus, F.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

O’Faolain, L.

Osgood, R. M.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Park, H.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Pryce, I. M.

Qian, W.

Raj, K.

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

Rasigade, G.

Reano, R. M.

Reed, G. T.

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Sanchis, P.

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

Shubin, I.

Smith, H. I.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Steier, W. H.

Stemme, G.

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

Sullivan, P.

Sun, P.

Sysak, M.

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

Thacker, H.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Vivien, L.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Wang, G.

Wang, X.

Wood, M.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yao, J.

Zgonik, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

Zheng, X.

Appl. Phys. B (1)

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, H.-W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. Sysak, and J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.17(2), 333–346 (2011).
[CrossRef]

J. Appl. Phys. (1)

F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys.99(3), 031101 (2006).
[CrossRef]

J. Electrochem. Soc. (1)

M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” J. Electrochem. Soc.142(6), 2067–2071 (1995).
[CrossRef]

Laser Photon. Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev.6(4), 488–503 (2012).
[CrossRef]

Nat. Photonics (3)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

G. T. Reed, G. Mashanovich, F. T. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (12)

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express17(25), 22271–22280 (2009).
[CrossRef] [PubMed]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18(11), 11192–11201 (2010).
[CrossRef] [PubMed]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express15(13), 8401–8410 (2007).
[CrossRef] [PubMed]

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express17(6), 4565–4574 (2009).
[CrossRef] [PubMed]

M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express20(1), 164–172 (2012).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
[CrossRef] [PubMed]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express20(4), 4032–4038 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (5)

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

R. Kou, T. Okubo, S. Kurimura, H. Nakajima, J. Ichikawa, and K. Kondou, “Quasi-phase-matched wavelength converter with adhered ridge waveguide for hybrid silicon photonics,” in CLEO: 2008, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThl4.

P. Rabiei, J. Ma, J. Chiles, S. Khan, and S. Fathpour, “High-Q lithium niobate microring-resonators on silicon,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1F.3.

S. Srinivasan, D. Liang, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Micro-ring resonator based electro-absorption modulators on the hybrid III-V on silicon platform,” In Group IV Photonics (GFP), 99–101 (2012).

E. D. Palik, ed., Handbook of Optical Constants of Solids, vol. 1 (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a tunable hybrid silicon and LiNbO3 microring resonator with integrated electrodes. For clarity, the PECVD SiO2 top-cladding layer and electrical contact pads are not shown. (b) Schematic of the cross-section of the device structure along the dashed line shown in (a). Both schematics are not drawn to scale.

Fig. 2
Fig. 2

(a) BPM calculations of the optical mode power in LiNbO3 versus the thickness of LiNbO3 for the TM mode and the TE mode in the hybrid Si/LiNbO3 structure. (b) Calculations of the optical loss (blue) induced by the top aluminum electrode and the voltage induced vertical electric field in LiNbO3 (red) versus the PECVD silicon dioxide thickness. The LiNbO3 thin film thickness is set to be 800 nm and the applied voltage is 1 V.

Fig. 3
Fig. 3

(a) Calculated TM mode optical bending loss versus the ring radius for BCB thickness of 0 nm, 20 nm, and 40 nm between the top of the silicon core and the bottom of the LiNbO3 thin film. (b) Calculated optical electric field distribution of the hybrid silicon and LiNbO3 structure for the fundamental TM mode at 1550 nm wavelength (Ez component).

Fig. 4
Fig. 4

Fabrication process of the device: (a) Silicon rib waveguide ring resonator patterned on SOI wafer using electron beam lithography and plasma etch, (b) BF2+ ion implantation, (c) nickel silicidation, (d) 100 nm aluminum bottom electrode deposition, (e) spin-coat of BCB, (f) indirect bonding of LiNbO3 thin film, (g) plasma etch of BCB, (h) deposition of 125 nm PECVD SiO2 (illustrated on top of the LiNbO3 only for simplicity), (i) deposition of 250 nm top aluminum electrode, (j) deposition of 900 nm PECVD SiO2, (k) patterning of via and top aluminum pad, (l) fabrication of cantilever couplers.

Fig. 5
Fig. 5

(a) Measurement setup; (b) Top-view optical micrograph of fabricated device.

Fig. 6
Fig. 6

(a) Measured optical transmission of a single resonance as a function of applied voltage. The measured resonance tunability is 12.5 pm/V. (b) Measured optical transmission spectrum of two consecutive resonances.

Metrics