Abstract

Due to the high burstiness and high-bandwidth characteristics of the applications, data center interconnection by elastic optical networks have attracted much attention of network operators and service providers. Many data center applications require lower delay and higher availability with the end-to-end guaranteed quality of service. In this paper, we propose and implement a novel elastic optical network based on enhanced software defined networking (eSDN) architecture for data center application, by introducing a transport-aware cross stratum optimization (TA-CSO) strategy. eSDN can enable cross stratum optimization of application and elastic optical network stratum resources and provide the elastic physical layer parameter adjustment, e.g., modulation format and bandwidth. We have designed and verified experimentally software defined path provisioning on our testbed with four real OpenFlow-enabled elastic optical nodes for data center application. The overall feasibility and efficiency of the proposed architecture is also experimentally demonstrated and compared with individual CSO and physical layer adjustment strategies in terms of path setup/release/adjustment latency, blocking probability and resource occupation rate.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
    [CrossRef]
  2. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
    [CrossRef]
  3. Y. Lee, G. Bernstein, N. So, T. Y. Kim, K. Shiomoto, and O. Gonzalez, “Research proposal for cross stratum optimization (CSO) between data centers and networks,” draft-lee-cross-stratum-optimization-datacenter-00 (2011), http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00 .
  4. H. Yang, Y. Zhao, J. Zhang, S. Wang, W. Gu, Y. Lin, and Y. Lee, “Cross stratum optimization of application and network resource based on global load balancing strategy in dynamic optical networks,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2012), paper JTh2A.38.
    [CrossRef]
  5. H. Yang, Y. Zhao, J. Zhang, S. Wang, W. Gu, Y. Ji, J. Han, Y. Lin, and Y. Lee, “Multi-Stratum Resource Integration for OpenFlow-based Data Center Interconnect [Invited],” J. Opt. Commun. Netw.5(10), A240–A248 (2013).
    [CrossRef]
  6. S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper Tu.1.D.1.
    [CrossRef]
  7. L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental validation and performance evaluation of OpenFlow-based wavelength path control in transparent optical networks,” Opt. Express19(27), 26578–26593 (2011).
    [CrossRef] [PubMed]
  8. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express21(5), 5487–5498 (2013).
    [CrossRef] [PubMed]
  9. L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper Mo.2.D.3.
    [CrossRef]
  10. R. Muñoz, R. Casellas, R. Martínez, and R. Vilalta, “Control plane solutions for dynamic and adaptive Flexi-Grid optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2013), paper We.3.E.1.
  11. J. Zhang, Y. Zhao, H. Yang, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “First Demonstration of enhanced Software Defined Networking (eSDN) over elastic Grid (eGrid) Optical Networks for Data Center Service Migration,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2013), paper PDP5B.1.
  12. A. Farrel, J. P. Vasseur, and J. Ash, “A Path Computation Element (PCE)-Based Architecture,” IETF RFC 4655 (2006), http://tools.ietf.org/html/rfc4655 .
  13. R. Casellas, R. Martinez, R. Munoz, L. Liu, T. Tsuritani, and I. Morita, “An integrated stateful PCE/OpenFlow controller for the control and management of flexi-grid optical networks,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2013), paper OW4G.2.
    [CrossRef]

2013

2012

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

2011

2009

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Amaya, N.

Autenrieth, A.

Casellas, R.

Channegowda, M.

Elbers, J. P.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

Gu, W.

Guo, H.

Han, J.

Ji, Y.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Kaczmarek, P.

Kostecki, P.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Lee, Y.

Lin, Y.

Liu, L.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

Martínez, R.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Morita, I.

Muñoz, R.

Nejabati, R.

Peng, S.

Rashidi Fard, M.

Simeonidou, D.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

Tsuritani, T.

Vilalta, R.

Wang, S.

Wu, J.

Yang, H.

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

Zervas, G.

Zhang, J.

Zhao, Y.

IEEE Commun. Mag.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag.47(11), 66–73 (2009).
[CrossRef]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag.50(2), s12–s20 (2012).
[CrossRef]

J. Opt. Commun. Netw.

Opt. Express

Other

L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper Mo.2.D.3.
[CrossRef]

R. Muñoz, R. Casellas, R. Martínez, and R. Vilalta, “Control plane solutions for dynamic and adaptive Flexi-Grid optical networks,” in Proceedings of European Conference on Optical Communication (ECOC 2013), paper We.3.E.1.

J. Zhang, Y. Zhao, H. Yang, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “First Demonstration of enhanced Software Defined Networking (eSDN) over elastic Grid (eGrid) Optical Networks for Data Center Service Migration,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2013), paper PDP5B.1.

A. Farrel, J. P. Vasseur, and J. Ash, “A Path Computation Element (PCE)-Based Architecture,” IETF RFC 4655 (2006), http://tools.ietf.org/html/rfc4655 .

R. Casellas, R. Martinez, R. Munoz, L. Liu, T. Tsuritani, and I. Morita, “An integrated stateful PCE/OpenFlow controller for the control and management of flexi-grid optical networks,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2013), paper OW4G.2.
[CrossRef]

Y. Lee, G. Bernstein, N. So, T. Y. Kim, K. Shiomoto, and O. Gonzalez, “Research proposal for cross stratum optimization (CSO) between data centers and networks,” draft-lee-cross-stratum-optimization-datacenter-00 (2011), http://tools.ietf.org/html/draft-lee-cross-stratum-optimization-datacenter-00 .

H. Yang, Y. Zhao, J. Zhang, S. Wang, W. Gu, Y. Lin, and Y. Lee, “Cross stratum optimization of application and network resource based on global load balancing strategy in dynamic optical networks,” in Proceedings of Optical Fiber Communications and National Fiber Optic Engineer Conference (OFC/NFOEC 2012), paper JTh2A.38.
[CrossRef]

S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,” in Proceedings of European Conference on Optical Communication (ECOC 2012), paper Tu.1.D.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The architecture of elastic optical networks based on eSDN.

Fig. 2
Fig. 2

The functional models of application and transport controllers (AC and TC).

Fig. 3
Fig. 3

The functional models of (a) OpenFlow-enabled SD-OTN, (b) Flex ROADM and (c) Flex ODU.

Fig. 4
Fig. 4

The extension of OpenFlow protocol for eSDN over elastic optical networks.

Fig. 5
Fig. 5

Interworking procedure of eSDN for data center application.

Fig. 6
Fig. 6

Experimental testbed and demonstrator setup.

Fig. 7
Fig. 7

(a, b) Bandwidth spectrum of SDPs. (c) SDP setup/release/adjustment latency.

Fig. 8
Fig. 8

Application graphical user interface (GUI) of testbed.

Fig. 9
Fig. 9

(a)The capture of the OpenFlow messages for automatic network discovery. (b) The capture of extended flow table message for SDP setup.

Fig. 10
Fig. 10

(a) Blocking probability and (b) resource occupation rate among various strategies under heavy traffic load scenario.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ac [ U C (t) , U R (t) , k C , k R ]= [ k C × U C (t) + k R × U R (t) ] / [ k C + k R ]
f bc [ B l , D l , H p , k B , k D ]= k B l=1 H p B l / H p B + k D l=1 H p D l
f ai f ¯ a 2 = max a { f a f ¯ a 2 }, f aj f ¯ a 2 = min a { f a f ¯ a 2 }
β= cov( f ai , f aj ) D( f ai )D( f aj ) = E( f ai f aj )E( f ai )E( f aj ) E( f ai 2 ) [ E( f ai ) ] 2 E( f aj 2 ) [ E( f aj ) ] 2
α= β f ac max{ f a1 , f a2 f ak } + ( 1β ) f bc max{ f b1 , f b2 f bk }

Metrics