Abstract

Transverse mode discrimination is demonstrated in long-wavelength wafer-fused vertical-cavity surface-emitting lasers using ring-shaped air gap patterns at the fused interface between the cavity and the top distributed Bragg reflector. A significant number of devices with varying pattern dimensions was investigated by on-wafer mapping, allowing in particular the identification of a design that reproducibly increases the maximal single-mode emitted power by about 30 %. Numerical simulations support these observations and allow specifying optimized ring dimensions for which higher-order transverse modes are localized out of the optical aperture. These simulations predict further enhancement of the single-mode properties of the devices with negligible penalty on threshold current and emitted power.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Michalzik, ed., VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).
  2. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009).
    [CrossRef]
  3. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
    [CrossRef]
  4. T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
    [CrossRef]
  5. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
    [CrossRef]
  6. A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
    [CrossRef]
  7. T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).
  8. A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
    [CrossRef]
  9. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
    [CrossRef]
  10. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron.17, 1552–1567 (2011).
    [CrossRef]
  11. R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004).
    [CrossRef]
  12. M. Dems, R. Kotynski, and K. Panajotov, “Plane wave admittance method—A novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express13, 3196–3207 (2005).
    [CrossRef] [PubMed]
  13. L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
    [CrossRef]
  14. M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
    [CrossRef]

2013 (5)

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

2011 (2)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron.17, 1552–1567 (2011).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

2009 (1)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009).
[CrossRef]

2007 (1)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

2005 (1)

2004 (3)

R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Achtenhagen, M.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Amann, M.-C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

Berseth, C.-A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Böhm, G.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Caliman, A.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Czyszanowski, T.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

Debernardi, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

Deichsel, E.

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Dems, M.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

M. Dems, R. Kotynski, and K. Panajotov, “Plane wave admittance method—A novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express13, 3196–3207 (2005).
[CrossRef] [PubMed]

Ebert, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Frasunkiewicz, L.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

Geiger, K.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Grasse, C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

Gründl, T.

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Iakovlev, V.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Kapon, E.

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Kotynski, R.

Larsson, A.

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron.17, 1552–1567 (2011).
[CrossRef]

Mereuta, A.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Meyer, R.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Mickovic, Z.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

Mircea, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

Müller, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

Nakwaski, W.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004).
[CrossRef]

Ortsiefer, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

Panajotov, K.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

M. Dems, R. Kotynski, and K. Panajotov, “Plane wave admittance method—A novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express13, 3196–3207 (2005).
[CrossRef] [PubMed]

Royo, P.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

Rudra, A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Sarzala, R. P.

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004).
[CrossRef]

Sirbu, A.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009).
[CrossRef]

Suruceanu, G.

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Syrbu, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

Volet, N.

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

Walczak, J.

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

Wasiak, M.

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

IEEE J. Lightwave Technol. (1)

L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron.17, 1552–1567 (2011).
[CrossRef]

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013).
[CrossRef]

T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).

IEEE Photon. Technol. Lett. (1)

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007).
[CrossRef]

A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013).
[CrossRef]

M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013).
[CrossRef]

J. Cryst. Growth (1)

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004).
[CrossRef]

Nat. Photonics (1)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009).
[CrossRef]

Opt. Express (1)

Semicond. Sci. Technol. (1)

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011).
[CrossRef]

Other (1)

R. Michalzik, ed., VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic cross-section of the patterned VCSEL, refractive index along the cavity (in green) and calculated normalized electric field (in blue). Red dashed lines show the position of the fused interfaces. (b) SEM micrographs of a vertical cross-section at the center of the device. Inset shows an enlargement of the area delimited by the yellow rectangle.

Fig. 2
Fig. 2

Characteristics of patterned-cavity and non-patterned VCSELs at 20°C. (a) Optical spectra versus current and (b) at 12 mA. (c) SMSR and emitted power for the device without pattern (black), with pattern π1 (red) and with pattern π2 (green).

Fig. 3
Fig. 3

(a) SMSR and emitted power at 50°C (left) and at 80°C (right), for the typical device without pattern (black) and with pattern π2 (green). (b) Distribution of maximal SM emitted power LSM at 20°C for all the lasing devices without pattern (top) and with pattern π2 (bottom). Solid and dashed red lines indicate respectively the median value and the median absolute deviation.

Fig. 4
Fig. 4

(a) Measured spectrally-resolved NF distributions of LP01 (left) and LP11 (right) for the reference device at 20°C and 12 mA. The calculated position of the TJ (dTJ = 6 μm) is indicated by a solid white circle. (b) Radial NF distributions of LP01 (solid lines) and LP11 (dashed lines) along the direction defined by the straight line between the respective maxima of these modes [see the white crosses in (a)], for the device without pattern (black), with pattern π1 (red) and π2 (green). The position of these patterns is indicated by arrows.

Fig. 5
Fig. 5

(a) Calculated modal gain of HE11 (left) and HE21 (right) as a function of the width w and inner diameter dP of the ring pattern. (b) Radial distributions of HE11 (solid lines) and HE21 (dashed lines) without pattern (black), with pattern π2 (green) and π′ (blue), in the plane of the active region. The position of these patterns is indicated by arrows.

Metrics