Abstract

We report the first laterally-coupled distributed feedback (LC-DFB) laser with a quarter-wave equivalent phase shift (EPS) realized by interference lithography (IL) and conventional photolithography. A specially designed sampled grating is fabricated on both sidewalls of a ridge waveguide to provide a quarter-wave EPS at the center of the cavity. The resulting laser exhibits stable single-mode lasing operation over a wide range of injection currents, with a side mode suppression ratio (SMSR) of 41.1 dB. This provides a practical, low-cost method to fabricate quarter-wave phase shifted DFB lasers with high performance without any epitaxial regrowth or the use of electron-beam lithography, thereby simplifying the fabrication of DFB lasers with stable and precise wavelengths, as single devices or as arrays in photonic integrated circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Li, X. Zhang, and J. Yao, “Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology,” Opt. Express21(17), 19966–19971 (2013).
    [CrossRef] [PubMed]
  2. L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
    [CrossRef]
  3. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
    [CrossRef] [PubMed]
  4. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley, 2012), Chap. 3.
  5. K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
    [CrossRef]
  6. W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt.27(8), 1377–1380 (1988).
    [CrossRef] [PubMed]
  7. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express15(5), 2348–2353 (2007).
    [CrossRef] [PubMed]
  8. M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
    [CrossRef]
  9. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
    [CrossRef]
  10. J. Li and J. Cheng, “Laterally-coupled distributed feedback laser with first-order gratings by interference lithography,” Electron. Lett.49(12), 764–766 (2013).
    [CrossRef]
  11. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett.29(12), 1333–1335 (2004).
    [CrossRef] [PubMed]
  12. J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
    [CrossRef]
  13. J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
    [CrossRef]
  14. A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
    [CrossRef]
  15. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
    [CrossRef] [PubMed]
  16. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
    [CrossRef]

2013 (2)

2012 (2)

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
[CrossRef]

2009 (2)

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

2007 (1)

2004 (1)

2003 (1)

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

1994 (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

1991 (1)

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

1989 (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

1988 (1)

1984 (1)

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Alwan, J. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Beernink, K. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Bryan, R. P.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Chan, W. K.

Chen, X.

Cheng, J.

J. Li and J. Cheng, “Laterally-coupled distributed feedback laser with first-order gratings by interference lithography,” Electron. Lett.49(12), 764–766 (2013).
[CrossRef]

Cheng, Y.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Chung, J.

Cockerill, T. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Coleman, J. J.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Contolini, R. J.

Dai, Y.

Donnelly, V. M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Dumitrescu, M.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Eda, N.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Furst, W.

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

Furuya, K.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Holzwarth, C. W.

J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
[CrossRef]

Hughes, J. S.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Jia, L.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Karinen, J.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Koyama, F.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Laakso, A.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Li, J.

J. Li and J. Cheng, “Laterally-coupled distributed feedback laser with first-order gratings by interference lithography,” Electron. Lett.49(12), 764–766 (2013).
[CrossRef]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
[CrossRef] [PubMed]

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Li, S.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Li, W.

Liu, S.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Liu, Y.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Lu, Y.

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
[CrossRef] [PubMed]

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Man, J. W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

McCaulley, J. A.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Miller, L. M.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Mohrle, M.

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

Pessa, M.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Sekartedjo, K.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Shi, Y.

Sigmund, A.

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

Smith, H. I.

J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
[CrossRef]

Steingruber, R.

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

Suematsu, Y.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Sun, J.

J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
[CrossRef]

Suna, A.

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

Suominen, M.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Taha, I.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Tanbun-Ek, T.

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Verdeyen, J. T.

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

Vernon, M.

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Viheriälä, J.

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Wang, B. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Wang, H.

Wang, W.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Wang, X.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

Xia, L.

Xie, L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Xie, S.

Yao, J.

Yin, Z.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009).
[CrossRef] [PubMed]

Yuan, H. Q.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Zhang, X.

Zhang, Y.

Zhao, L. J.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Zhu, H.

Zhu, H. L.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Zhu, N. H.

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984).
[CrossRef]

J. Li and J. Cheng, “Laterally-coupled distributed feedback laser with first-order gratings by interference lithography,” Electron. Lett.49(12), 764–766 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012).
[CrossRef]

M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003).
[CrossRef]

L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991).
[CrossRef]

L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994).
[CrossRef] [PubMed]

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley, 2012), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of the LC-DFB laser with the EPS region at the center of the laser cavity after etching the ridge trench.

Fig. 2
Fig. 2

SEM image showing the side view (a) and top view (b) of a LC-DFB laser with an EPS region after metallization.

Fig. 3
Fig. 3

Lasing spectrum of the LC-DFB laser with a quarter-wave EPS region under an injection current of 100 mA. A SMSR of 41.1 dB is obtained.

Fig. 4
Fig. 4

LIV characteristics of the LC-DFB laser with EPS at different ambient temperatures.

Fig. 5
Fig. 5

Lasing spectrum of another LC-DFB laser with EPS design for 1536 nm operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π Λ ± 2π P =2 2π λ P / n P .
θ P =2π ΔP P =π.

Metrics