Abstract

Crack formations inside a LiF single crystal after femtosecond laser irradiation at multiple points were investigated. In the case of sequential laser irradiation at three points, the propagations of some cracks were prevented by the dislocation bands generated by the previous laser irradiation. On the other hand, in the case of simultaneous laser irradiation at three points with a spatial light modulator, cracks in all the <100> directions from the photoexcited regions were generated clearly, but the length of one crack depended on the distribution of laser irradiation positions. The simulation of elastic dynamics after fs laser irradiation at three points elucidated that the interference of laser induced stress waves depended on the distributions of the irradiation positions. We found that the constructive interference of stress waves at a crack tip should have prevented the crack from propagating further and the tensile stress by destructive interference of stress waves along a crack should have facilitated the propagation of the crack.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
    [CrossRef] [PubMed]
  2. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  3. B. Lawn, Fracture of Brittle Solids (Cambridge University, 1993).
  4. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (John Wiley, 1976), Chaps. 4 and 14.
  5. Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
    [CrossRef]
  6. S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
    [CrossRef]
  7. B. Qian, J. Song, G. Dong, L. Su, B. Zhu, X. Liu, S. Sun, Q. Zhang, and J. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express17(10), 8552–8557 (2009).
    [CrossRef] [PubMed]
  8. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
    [CrossRef] [PubMed]
  9. T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
    [CrossRef]
  10. K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
    [CrossRef]
  11. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express19(7), 5725–5734 (2011).
    [CrossRef] [PubMed]
  12. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005).
    [CrossRef]
  13. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
    [CrossRef] [PubMed]
  14. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
    [CrossRef]
  15. K. Matthews, The Crystran Handbook of Infra-Red and Ultra-Violet Optical Materials (Crystran Ltd. 2011) p. 48. Available: http://issuu.com/crystran/docs/handbook?e=2724951/2745150 .
  16. L. S. Birks, Electron Probe Microanalysis (Chemical Analysis) (John Wiley, 1963), Chap. 6.
  17. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, 1986).
  18. C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957).
    [CrossRef]
  19. T. H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, 1990) pp. 102–106 and Chap. 5.
  20. N. F. Mott, “Dislocations, work-hardening and creep,” Nature175(4452), 365–367 (1955).
    [CrossRef]
  21. G. R. Fowles, Introduction to Modern Optics (Dover, 1975), Chap. 2.
  22. M. Ohring, Engineering Materials Science (Academic, 1995) Chap. 7.

2012

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

2011

2009

B. Qian, J. Song, G. Dong, L. Su, B. Zhu, X. Liu, S. Sun, Q. Zhang, and J. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express17(10), 8552–8557 (2009).
[CrossRef] [PubMed]

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

2007

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

2006

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

2005

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

2003

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

1988

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
[CrossRef]

1957

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957).
[CrossRef]

1955

N. F. Mott, “Dislocations, work-hardening and creep,” Nature175(4452), 365–367 (1955).
[CrossRef]

Briscoe, C. V.

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957).
[CrossRef]

Chou, Y. T.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
[CrossRef]

Dong, G.

Dyer, P. E.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

Eida, M.

Fujita, K.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Harmer, M. P.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
[CrossRef]

Hasaka, N.

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

Hayasaki, Y.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express19(7), 5725–5734 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Hirao, K.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Ikuhara, Y.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Isaka, M.

Juodkazis, S.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express19(7), 5725–5734 (2011).
[CrossRef] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Kanehira, S.

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Liu, X.

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Miura, K.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Morita, H.

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

Mott, N. F.

N. F. Mott, “Dislocations, work-hardening and creep,” Nature175(4452), 365–367 (1955).
[CrossRef]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Nishi, M.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Ohmura, E.

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

Qian, B.

Qiu, J.

Sakakura, M.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005).
[CrossRef]

Shibata, N.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Shimotsuma, Y.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

Si, J.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Song, J.

Squire, C. F.

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957).
[CrossRef]

Su, L.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Sun, S.

Takita, A.

Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass,” Opt. Express19(7), 5725–5734 (2011).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Terazima, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005).
[CrossRef]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Tochio, T.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express19(18), 17780 (2011).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Wang, Z. Y.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
[CrossRef]

Yamamoto, K.

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

Zhang, Q.

Zhu, B.

Appl. Phys. B

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005).
[CrossRef]

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007).
[CrossRef]

Chem. Rev.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003).
[CrossRef] [PubMed]

J. Manuf. Sci. Eng.

K. Yamamoto, E. Ohmura, N. Hasaka, and H. Morita, “Crack propagation in glass by laser irradiation along laser scribed line,” J. Manuf. Sci. Eng.131(5), 051002 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

T. Tochio, M. Sakakura, Y. Shimotsuma, M. Nishi, K. Hirao, and K. Miura, “Transient stress imaging after irradiation with a focused femtosecond laser pulse inside a single crystal,” Jpn. J. Appl. Phys.51, 126602 (2012).
[CrossRef]

Mater. Lett.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5–6), 224–228 (1988).
[CrossRef]

Nature

N. F. Mott, “Dislocations, work-hardening and creep,” Nature175(4452), 365–367 (1955).
[CrossRef]

Opt. Express

Phys. Rev.

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957).
[CrossRef]

Phys. Rev. B

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006).
[CrossRef] [PubMed]

Other

T. H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, 1990) pp. 102–106 and Chap. 5.

B. Lawn, Fracture of Brittle Solids (Cambridge University, 1993).

W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (John Wiley, 1976), Chaps. 4 and 14.

K. Matthews, The Crystran Handbook of Infra-Red and Ultra-Violet Optical Materials (Crystran Ltd. 2011) p. 48. Available: http://issuu.com/crystran/docs/handbook?e=2724951/2745150 .

L. S. Birks, Electron Probe Microanalysis (Chemical Analysis) (John Wiley, 1963), Chap. 6.

L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, 1986).

G. R. Fowles, Introduction to Modern Optics (Dover, 1975), Chap. 2.

M. Ohring, Engineering Materials Science (Academic, 1995) Chap. 7.

Supplementary Material (2)

» Media 1: MOV (2821 KB)     
» Media 2: MOV (2481 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structural change inside a LiF single crystal after the photoexcitation by a focused fs laser pulse. (a) Transmission optical microscope image, and (b) birefringence image. In (b), the color and brightness indicate the azimuth and retardance of the birefringence, respectively. (c) The retardance distribution at 3000 ps after the fs laser irradiation [9]. The white arrows are the direction of stress around the crack tip.

Fig. 2
Fig. 2

(a) Schematic illustration of optical setup of a parallel laser processing. L1, L2 are lenses of the focal lengths of 500 mm and 150 mm, respectively. MP is a metal plate, which blocked a 0th order diffraction and unnecessary light spots. M is a mirror. (b) The pattern of three light spots for photoexcitation inside a LiF single crystal. The red points are the photoexcited region.

Fig. 3
Fig. 3

(a) Transmission optical microscope images and (b) birefringence images of fs laser-induced cracks by sequential laser irradiations at two (left) or three (right) points inside a LiF single crystal. The sequence of the laser irradiation was #1, #2 and #3. (Media 1) In (b), the color and brightness indicate the azimuth and retardance of the birefringence, respectively. In the left images in (b), white dotted circles indicate the positions of the third photoexcited regions.

Fig. 4
Fig. 4

(a) Transmission optical microscope images of fs laser-induced cracks by simultaneous laser irradiation at three points inside a LiF single crystal. (Media 2) (b) The length of the downward crack from the vertex plotted against θ. (c) Pulse energy dependence of the crack lengths at θ = 105°. The red circles are the length of the downward crack from the vertex, and the blue ones are those of the other cracks.

Fig. 5
Fig. 5

Simulated transient density distributions after simultaneous photoexcitation at three points inside a LiF single crystal. The regions in which the crack became shorter or longer in the experiment are magnified in the right.

Fig. 6
Fig. 6

Proposed mechanism of modulation of crack propagation based on the simulation of the interference of stress waves. (a) θ = 75°, at which the compressive stress is formed at the crack tip and propagates along the crack. (b) θ = 105°, at which the compressive stress appears along the crack, but it changes to a tensile stress in 500 ps.

Metrics