Abstract

Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Collings and J. S. Patel, “Handbook of Liquid Crystal Research (Oxford University Express, 1997) Chap. 9.
  2. R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
    [CrossRef]
  3. J. L. West, “Phase-separation of liquid-crystals in polymers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)157(1), 427–441 (1988).
  4. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).
  5. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
    [CrossRef]
  7. M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
    [CrossRef]
  8. P. Drzaic and P. S. Drzaic, “Putting liquid crystal droplets to work: A short history of polymer dispersed liquid crystals,” Liq. Cryst.33(11–12), 1281–1296 (2006).
    [CrossRef]
  9. D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
    [CrossRef] [PubMed]
  10. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett.76(16), 2235–2237 (2000).
    [CrossRef]
  11. B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
    [CrossRef]
  12. D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
    [CrossRef]
  13. C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
    [CrossRef]
  14. P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
    [CrossRef]

2008 (1)

D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
[CrossRef]

2006 (1)

P. Drzaic and P. S. Drzaic, “Putting liquid crystal droplets to work: A short history of polymer dispersed liquid crystals,” Liq. Cryst.33(11–12), 1281–1296 (2006).
[CrossRef]

2000 (1)

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett.76(16), 2235–2237 (2000).
[CrossRef]

1999 (1)

M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
[CrossRef]

1994 (2)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

1992 (1)

D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

1991 (1)

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

1988 (2)

J. L. West, “Phase-separation of liquid-crystals in polymers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)157(1), 427–441 (1988).

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

1987 (1)

B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Bowley, C. C.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett.76(16), 2235–2237 (2000).
[CrossRef]

Boyko, E. P.

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

Brimicombe, P. D.

P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Carboni, C.

M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
[CrossRef]

Cheng, S. Z. D.

D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
[CrossRef] [PubMed]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Coles, H. J.

M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
[CrossRef]

Coles, M. J.

M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
[CrossRef]

Crawford, G. P.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett.76(16), 2235–2237 (2000).
[CrossRef]

Doane, J. W.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
[CrossRef]

Drzaic, P.

P. Drzaic and P. S. Drzaic, “Putting liquid crystal droplets to work: A short history of polymer dispersed liquid crystals,” Liq. Cryst.33(11–12), 1281–1296 (2006).
[CrossRef]

Drzaic, P. S.

P. Drzaic and P. S. Drzaic, “Putting liquid crystal droplets to work: A short history of polymer dispersed liquid crystals,” Liq. Cryst.33(11–12), 1281–1296 (2006).
[CrossRef]

Elston, S. J.

P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
[CrossRef]

Erdmann, J. H.

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

Fung, R. X.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

Golemme, A.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

Hsieh, C. T.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

Huang, C. Y.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

Jeong, K. U.

D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
[CrossRef] [PubMed]

Lin, Y. G.

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Ondris-Crawford, R.

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

Raynes, E. P.

P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

Wagner, B. G.

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

J. L. West, “Phase-separation of liquid-crystals in polymers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)157(1), 427–441 (1988).

B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
[CrossRef]

Whitehead, J. B.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

Wu, B.-G.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
[CrossRef]

Yang, D. K.

D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
[CrossRef] [PubMed]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Yang, D.-K.

D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Zumer, S.

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

Appl. Phys. Lett. (4)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett.64(9), 1074–1076 (1994).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett.76(16), 2235–2237 (2000).
[CrossRef]

D.-K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

C. Y. Huang, R. X. Fung, Y. G. Lin, and C. T. Hsieh, “Fast switching of polymer-stabilized liquid crystal pi cells,” Appl. Phys. Lett.90(17), 171918 (2007).
[CrossRef]

J. Appl. Phys. (3)

B.-G. Wu, J. L. West, and J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys.62(9), 3925–3931 (1987).
[CrossRef]

R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, “Microscope textures of nematic droplets in polymer dispersed liquid crystals,” J. Appl. Phys.69(9), 6380–6386 (1991).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. Phys. Chem. B (1)

D. K. Yang, K. U. Jeong, and S. Z. D. Cheng, “Structure of liquid crystal droplets with chiral propeller texture,” J. Phys. Chem. B112(5), 1358–1366 (2008).
[CrossRef] [PubMed]

Liq. Cryst. (3)

P. D. Brimicombe, S. J. Elston, and E. P. Raynes, “A dual frequency addressed polymer stabilized pi-cell liquid crystal device,” Liq. Cryst.34(5), 641–647 (2007).
[CrossRef]

M. J. Coles, C. Carboni, and H. J. Coles, “A highly bistable fast-shear aligned polymer dispersed ferroelectric liquid crystal device,” Liq. Cryst.26(5), 679–684 (1999).
[CrossRef]

P. Drzaic and P. S. Drzaic, “Putting liquid crystal droplets to work: A short history of polymer dispersed liquid crystals,” Liq. Cryst.33(11–12), 1281–1296 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

J. L. West, “Phase-separation of liquid-crystals in polymers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)157(1), 427–441 (1988).

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)165(1), 511–532 (1988).

Other (1)

P. J. Collings and J. S. Patel, “Handbook of Liquid Crystal Research (Oxford University Express, 1997) Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of (a) scattering and (b) transparent state of the conventional PDLC cell.

Fig. 2
Fig. 2

Fabrication procedure of the proposed PSLC cell using a DFLC-RM mixture. (a) DFLC-RM mixture was injected into an empty cell and then UV-polymerized in presence of 1 kHz 2 V square voltage. (b) DFLC and polymerized RM were vertical aligned after UV exposure. (c) chemical structure of the RM molecule (RM257) used in the paper.

Fig. 3
Fig. 3

Schematic illustration of proposed PDLC using RM and DFLC at (a) scattering and (b) transparent state.

Fig. 4
Fig. 4

3.0 wt% RM mixed DF-PSLC cell images at (a) 0 V and (b) 1 kHz 40 V, and (c) 50 kHz 40 V state. POM image of the 3.0 wt% RM mixed PSLC cell at (d) 0 V, (e) 1 kHz 40 V, and (f) 50 kHz 40 V state. The inset images in (d) and (e) are the conoscopy image of the cell.

Fig. 5
Fig. 5

(a) TR and (b) CR of the normal PDLC, 3.0 wt% RM-, and 5.0 wt% RM-mixed DF- PSLC cells vs. applied voltage. CR of normal PDLC was defined as normalized TR(V) by TR at 0 V state, whereas CR of DF-PSLC was defined as TR(V) under 1 kHz applied voltage normalized with TR(V) under 50 kHz voltage.

Fig. 6
Fig. 6

TR of normal PDLC and DF-PSLC cells vs. incident angle θ at (a) transparent and (b) scattering state. TR at transparent state was obtained by applying 1 kHz 25 V voltage. TR of the normal PDLC and DF-PSLC cells at scattering state was measured under 0 V and 50 kHz 25 V, respectively.

Fig. 7
Fig. 7

(a)-(c) 3 wt% DF-PSLC and (d)-(f) normal PDLC cells under 1 kHz 25 V bipolar voltage. Incident angle θ = −60° in (a) and (d), θ = 0° in (b) and (e), θ = + 60° in (c) and (f).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e (θ)= ( sin 2 θ n e 2 + cos 2 θ n o 2 ) 1 2

Metrics