Abstract

We present the design, fabrication, and the characterization of high-Q slotted 1D photonic crystal (PhC) cavities with parabolic-width stack. Their peculiar geometry enables the location of the resonating mode close to the air-band. The majority of optical field distributes in the slotted low-index area and the light matter interaction with the analytes has been enhanced. Cavities with measured Q-factors ~104 have been demonstrated. The refractive index sensing measurement for NaCl solutions with different concentrations shows a sensitivity around 410. Both the achieved Q-factor and the sensitivity are higher than the one reported recently by using 2D slotted PhC cavities. The total size for the sensing part of the present device is reduced to 16.8 × 2.5 μm2.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006).
    [CrossRef]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  3. M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
    [CrossRef] [PubMed]
  4. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  6. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol.16(4), 583–592 (1998).
    [CrossRef]
  7. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express20(24), 27039–27044 (2012).
    [CrossRef] [PubMed]
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  9. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
    [CrossRef]
  10. J. Jágerská, H. Zhang, Z. Diao, N. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett.35(15), 2523–2525 (2010).
    [CrossRef] [PubMed]
  11. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
    [CrossRef] [PubMed]
  12. S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
    [CrossRef]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express16(15), 11095–11102 (2008).
    [CrossRef] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
    [CrossRef]
  16. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008).
    [CrossRef] [PubMed]
  17. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
    [CrossRef]
  18. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
    [CrossRef] [PubMed]
  19. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
    [CrossRef] [PubMed]
  20. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
    [CrossRef]
  21. D. R. Lyde, ed., Handbook of Chemistry and Physics (CRC Press, 1997–1998).
  22. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974).
    [CrossRef]
  23. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]

2013 (2)

M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
[CrossRef] [PubMed]

S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
[CrossRef]

2012 (1)

2011 (2)

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (2)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
[CrossRef]

2008 (5)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

2006 (1)

R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006).
[CrossRef]

2004 (1)

1998 (1)

1974 (1)

Ahn, B.-H.

Almeida, V. R.

Barrios, C. A.

Chen, L.

Daw, R.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Di Falco, A.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
[CrossRef] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
[CrossRef]

Diao, Z.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Fabricius, N.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Finkelstein, J.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Gong, Y.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
[CrossRef]

Hollenbach, U.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

Houdré, R.

Ingenhoff, J.

Jágerská, J.

Kang, J.-H.

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Kim, K.-S.

Kim, M.-K.

Krauss, T. F.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
[CrossRef] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
[CrossRef]

Kuramochi, E.

Lee, Y.-H.

Lipson, M.

Loncar, M.

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008).
[CrossRef] [PubMed]

Luff, B. J.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008).
[CrossRef] [PubMed]

Min, B.

Mirsadeghi, S. H.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Notomi, M.

O'Faolain, L.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
[CrossRef]

Palmer, K. F.

Piehler, J.

Quan, Q.

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Robinson, J. T.

Roh, Y.-G.

Schelew, E.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
[CrossRef]

Scullion, M. G.

M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
[CrossRef] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Shi, Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Song, J.-H.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tanabe, T.

Taniyama, H.

Thomas, N.

Vuckovic, J.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wilkinson, J. S.

Williams, D.

Xu, Q.

Yao, K.

Young, J. F.

S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
[CrossRef]

Zhang, H.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009).
[CrossRef]

S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Biosens. Bioelectron. (1)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Nature (1)

R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Sensors (Basel) (1)

M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013).
[CrossRef] [PubMed]

Other (1)

D. R. Lyde, ed., Handbook of Chemistry and Physics (CRC Press, 1997–1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematics of slotted width modulated stack cavity. (b) Electric field intensity (|Ey|2) calculated by 3D FDTD method for the cavity with Slot Width = 200 nm, a = 410 nm, Wx = 0.4a and Wy parabolically modulated from Wy(0) = 3.0a in the center to Wy(20) = 6.0a on either side. (c) Zoomed in picture of the framed part in (a) with annotations. (d) TE band structure of periodic stacks with Wy = 3.0a (red lines) and Wy = 6.0a (blue lines).The black dots indicates the resonant frequency. (e)Wavelength shifts and Qtot variances over different background refractive indexes. (f) Influence of the slot width on the Q-factor and sensitivity of slotted stack cavity sensor.

Fig. 2
Fig. 2

(a) SEM micrograph of the device (left half). (b)(c)(d) SEM images show the fabricated slotted stack cavity, input grating coupler, and the coupling region connecting the strip/slot waveguides. (e) Measured transmission spectrum of the slotted stack cavity in vacuum. The inset shows the fit to Lorentzian lineshape for the resonance (Q = ~9200).

Fig. 3
Fig. 3

(a) Measured transmission responses of the slotted stack photonic crystal cavity covered the aqueous NaCl solutions with different concentrations. (b) The resonant wavelength λ shifts as the concentration varies.

Metrics