Abstract

Abstract: The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).
  2. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).
  3. M. Feiyue, G. Wei, and M. Yingying, “Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars,” Opt. Lett.37(4), 617–619 (2012).
    [CrossRef] [PubMed]
  4. M. Vaughan, D. M. Winker, and K. Powell, “CALIOP algorithm theoretical basis document, part 2: Feature detection and layer properties algorithms,” (NASA Langley Research Center, Hampton, Virginia, USA, 2005).
  5. J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. B. Ckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in laser remote sensing, (Selected Papers of the 20th International Laser Radar Conference, 2001), pp. 155–158.
  6. F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
    [CrossRef]
  7. F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
    [CrossRef]
  8. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt.31(10), 1488–1494 (1992).
    [CrossRef] [PubMed]
  9. D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994).
    [CrossRef]
  10. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001).
    [CrossRef]
  11. F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express21(7), 8286–8297 (2013).
    [CrossRef] [PubMed]
  12. Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
    [CrossRef]
  13. J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
    [CrossRef]
  14. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt.34(30), 7019–7031 (1995).
    [CrossRef] [PubMed]
  15. F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
    [CrossRef]
  16. F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011).
    [CrossRef] [PubMed]
  17. M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
    [CrossRef]
  18. J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
    [CrossRef]
  19. W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
    [CrossRef]
  20. W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
    [CrossRef]
  21. D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).
  22. E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
    [CrossRef]
  23. S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
    [CrossRef]

2013 (3)

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express21(7), 8286–8297 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (3)

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011).
[CrossRef] [PubMed]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
[CrossRef]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
[CrossRef]

2010 (1)

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

2009 (1)

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

2008 (1)

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
[CrossRef]

2007 (1)

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

2001 (1)

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001).
[CrossRef]

1998 (1)

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

1995 (1)

1994 (1)

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994).
[CrossRef]

1992 (1)

1973 (1)

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).

Burton, S.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Campbell, J. R.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
[CrossRef]

Carswell, A. I.

Chu, S.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
[CrossRef]

Cluzeau, M.

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

Douglas, D. H.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).

Drobinski, P.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

Feiyue, M.

Ferrare, R.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Gaumet, J.

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

Getzewich, B. J.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Gong, W.

F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express21(7), 8286–8297 (2013).
[CrossRef] [PubMed]

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011).
[CrossRef] [PubMed]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
[CrossRef]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
[CrossRef]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

Haeffelin, M.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

Hair, J.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Hart, D.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
[CrossRef]

Heinrich, J.

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

Hostetler, C.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Hostetler, C. A.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Hunt, W. H.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Keogh, E.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
[CrossRef]

Kuehn, R. E.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Li, C.

Li, J.

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
[CrossRef]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

Liu, Z.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Mao, F.

F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express21(7), 8286–8297 (2013).
[CrossRef] [PubMed]

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
[CrossRef]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
[CrossRef]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011).
[CrossRef] [PubMed]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

McGill, M. J.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Morille, Y.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

Omar, A.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Pal, S. R.

Pazzani, M.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
[CrossRef]

Pelon, J.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

Peucker, T. K.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).

Pierrard, P.

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

Powell, K. A.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

Prieur, J.

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

Reba, M. N. M.

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
[CrossRef]

Rocadenbosch, F.

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
[CrossRef]

Rogers, R.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Sassen, K.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
[CrossRef]

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001).
[CrossRef]

Sicard, M.

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
[CrossRef]

Song, S.

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
[CrossRef]

Steinbrecht, W.

Tomas, S.

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
[CrossRef]

Vaughan, M.

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Vaughan, M. A.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994).
[CrossRef]

Wang, Z.

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001).
[CrossRef]

Wei, G.

Welton, E. J.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
[CrossRef]

Winker, D. M.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994).
[CrossRef]

Yingying, M.

Young, S. A.

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt.34(30), 7019–7031 (1995).
[CrossRef] [PubMed]

Zhang, J.

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

Zhu, Z.

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011).
[CrossRef] [PubMed]

Acta Opt. Sin. (1)

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010).
[CrossRef]

Appl. Opt. (3)

Atmos. Meas. Tech. (1)

S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013).
[CrossRef]

Atmos. Res. (1)

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994).
[CrossRef]

Int. J. Geo. Inf. and Geo. (1)

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).

J. Appl. Meteorol. (1)

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001).
[CrossRef]

J. Atmos. Ocean. Technol. (4)

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007).
[CrossRef]

J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998).
[CrossRef]

M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009).
[CrossRef]

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008).
[CrossRef]

Meteorol. Atmos. Phys. (1)

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011).
[CrossRef]

Opt. Commun. (1)

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013).
[CrossRef]

Opt. Lett. (1)

Other (6)

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375.
[CrossRef]

K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296.
[CrossRef]

M. Vaughan, D. M. Winker, and K. Powell, “CALIOP algorithm theoretical basis document, part 2: Feature detection and layer properties algorithms,” (NASA Langley Research Center, Hampton, Virginia, USA, 2005).

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. B. Ckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in laser remote sensing, (Selected Papers of the 20th International Laser Radar Conference, 2001), pp. 155–158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flowchart of the detection algorithm based on the linear segmentation.

Fig. 2
Fig. 2

Illustration of the selection of the threshold array. (a) Segmentations based on denoised signal Xde(r) and the threshold array of the sum of the mean and three times the standard deviation of e(r), and (b) segmentations based on X(r) and the threshold array of 6σ·r2. Where the signal for segmenting is in blue, break-bins are in orange, the noise derived by denoising technology is in gray, and the envelope of the noise ( ± 3σ·r2) is in red.

Fig. 3
Fig. 3

Illustration for investigating the detection efficiency of the linear segment algorithm. (a) the blue solid and dashed lines denote a pure range-corrected signal Xs(r) and its envelopes Xs(r)s ± 3σ·r2, respectively, orange denotes the extrapolated line of the upper envelope, (b) the same as (a) but with a optical thinner layer.

Fig. 4
Fig. 4

Refining the base and top using an extrapolating strategy. Blue denotes the original signal, orange indicates the fitted and extrapolated line, and red signifies the accepted layer detections.

Fig. 5
Fig. 5

Detection of simulated layers at 4-5 km with different noise levels. The standard deviation of the errors of the signal in Fig. 5(b)-5(d) are 2, 3, and 4 times as that of Fig. 5(a), respectively. Blue denotes the original signal, orange indicates the fitted and extrapolated line, and red signifies the accepted layer detections. Black and green error-bars of the detected base and top are calculated from 100 repeated simulations of the simple multi-scale method and linear segment scheme, respectively.

Fig. 6
Fig. 6

Detection of real signal at 21:26 on the 25 December 2008 in Wuhan. (a) The original signal is in blue, break-bins are in gray, the fitted lines are in red, (b) red indicates the slope of the fitted lines, (c) Blue denotes the original signal, red indicates the fitted and extrapolated line, (d) Blue denotes the original signal, and red signifies the accepted layer detections.

Fig. 7
Fig. 7

Time-altitude diagrams of detected layer boundaries with ln[X(r)] as measured by a 532-nm Mie lidar on 25-26 December 2008 in Wuhan, China. (a) Boundaries of the aerosol (gray curve) and cloud (black curve) layers detected by the simple multi-scale method, respectively, and (b) is the same as (a) but is detected by the linear segment algorithm.

Fig. 8
Fig. 8

Correlation analysis of the two methods. (a) Scatter-plot of the base (with “o” markers in blue) and top (with “+” markers in red) retrieved by the linear segment algorithm and the simple multi-scale method in 1-4.5 km, and (b) is the same as (a) but for 7-12 km.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = C r 2 G ( r ) [ β m ( r ) + β p ( r ) ] exp { 2 0 r [ α m ( r ) + α p ( r ) ] d r } +e ( r ) ,
d( r ) =| X( r ) X seg ( r ) |.
X( r )=S( r ) r 2 +e( r ) r 2 ,
d thr ( r )=6σ· r 2 .
Δ= [ X s ( r p )+e( r p ) r p 2 ] [ X s ( r b )+e( r b ) r b 2 ].
Δ thr = 3σ· r p 2 +3σ· r b 2 .
Δ=C β p ( r p ) T 2 ( r p )+e( r p ) r p 2 e( r b ) r b 2 ,
β p ( r p )> 6σ( r p 2 + r b 2 ) C T 2 ( r p ) .

Metrics