Abstract

We demonstrate micro structuring of fused-silica laser mirror substrates by Inverse Laser Drilling. Slits of a width down to ~80 µm and circular holes with diameters down to ~50 µm have been structured into quarter-inch thick substrates. Except for chipping, the surface areas around these openings have not been irreversibly affected by the manufacturing process. The micro structured mirrors can be used for geometrical output coupling of coherent EUV radiation from cavity-enhanced high harmonic generation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
    [CrossRef] [PubMed]
  2. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
    [CrossRef] [PubMed]
  3. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett.33(10), 1099–1101 (2008).
    [CrossRef] [PubMed]
  4. O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, and A. Apolonski, “Ultrabroadband efficient intracavity XUV output coupler,” Opt. Express19(11), 10232–10240 (2011).
    [CrossRef] [PubMed]
  5. I. Pupeza, E. E. Fill, and F. Krausz, “Low-loss VIS/IR-XUV beam splitter for high-power applications,” Opt. Express19(13), 12108–12118 (2011).
    [CrossRef] [PubMed]
  6. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express14(18), 8189–8197 (2006).
    [CrossRef] [PubMed]
  7. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
    [CrossRef]
  8. I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”
  9. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express16(9), 6233–6239 (2008).
    [CrossRef] [PubMed]
  10. J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011).
    [CrossRef] [PubMed]
  11. J. Weitenberg, P. Rußbüldt, I. Pupeza, T. Udem, H.-D. Hoffmann, and R. Poprawe are preparing a manuscript to be called “Geometrical on-axis access to high-finesse resonators by quasi-imaging.”
  12. W. P. Putnam, D. N. Schimpf, G. Abram, and F. X. Kärtner, “Bessel-Gauss beam enhancement cavities for high-intensity applications,” Opt. Express20(22), 24429–24443 (2012).
    [CrossRef] [PubMed]
  13. German Patent DE10029110B4 2006.05.18.
  14. D. Esser, H.-D. Hoffmann, B. Jungbluth, and R. Poprawe, “Regenerative amplification of laser diode pulses with variable pulse duration from ps to ns range,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, München, 2003), p. 34.
    [CrossRef]
  15. H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
    [CrossRef] [PubMed]
  16. M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
    [CrossRef]

2013 (3)

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

2012 (1)

2011 (3)

2008 (2)

2006 (1)

2005 (2)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
[CrossRef] [PubMed]

Abram, G.

Apolonski, A.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, and A. Apolonski, “Ultrabroadband efficient intracavity XUV output coupler,” Opt. Express19(11), 10232–10240 (2011).
[CrossRef] [PubMed]

Bartelt, H.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Becker, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Carstens, H.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

Eidam, T.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011).
[CrossRef] [PubMed]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Esser, D.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Fill, E.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, and A. Apolonski, “Ultrabroadband efficient intracavity XUV output coupler,” Opt. Express19(11), 10232–10240 (2011).
[CrossRef] [PubMed]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Fill, E. E.

Fitzau, O.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Gohle, C.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Gotlibovych, I.

Hänsch, T. W.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Hoffmann, H.-D.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Högner, M.

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Holzberger, S.

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Holzwarth, R.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Jones, R. J.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express14(18), 8189–8197 (2006).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
[CrossRef] [PubMed]

Kärtner, F. X.

Kaster, J.

Kobelke, J.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Krausz, F.

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, E. E. Fill, and F. Krausz, “Low-loss VIS/IR-XUV beam splitter for high-power applications,” Opt. Express19(13), 12108–12118 (2011).
[CrossRef] [PubMed]

O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, and A. Apolonski, “Ultrabroadband efficient intracavity XUV output coupler,” Opt. Express19(11), 10232–10240 (2011).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Limpert, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Lorenz, A.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Moll, K. D.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express14(18), 8189–8197 (2006).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
[CrossRef] [PubMed]

Ozawa, A.

Pervak, V.

Pronin, O.

Pupeza, I.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

I. Pupeza, E. E. Fill, and F. Krausz, “Low-loss VIS/IR-XUV beam splitter for high-power applications,” Opt. Express19(13), 12108–12118 (2011).
[CrossRef] [PubMed]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011).
[CrossRef] [PubMed]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Putnam, W. P.

Rauschenberger, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

O. Pronin, V. Pervak, E. Fill, J. Rauschenberger, F. Krausz, and A. Apolonski, “Ultrabroadband efficient intracavity XUV output coupler,” Opt. Express19(11), 10232–10240 (2011).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Rothhardt, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Rußbüldt, P.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011).
[CrossRef] [PubMed]

Schibli, T. R.

Schimpf, D. N.

Schneider, W.

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Schuster, K.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Schwuchow, A.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
[CrossRef] [PubMed]

Tünnermann, A.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Udem, T.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express16(9), 6233–6239 (2008).
[CrossRef] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Vernaleken, A.

Weitenberg, J.

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, and I. Pupeza, “Large-mode enhancement cavities,” Opt. Express21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011).
[CrossRef] [PubMed]

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Werner, M.

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Yakovlev, V. S.

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

Ye, J.

Yost, D. C.

Nat. Photonics (1)

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics7(8), 608–612 (2013).
[CrossRef]

Nature (1)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Fiber Technol. (1)

M. Becker, M. Werner, O. Fitzau, D. Esser, J. Kobelke, A. Lorenz, A. Schwuchow, M. Rothhardt, K. Schuster, H.-D. Hoffmann, and H. Bartelt, “Laser-drilled free-form silica fiber preforms for microstructured optical fibers,” Opt. Fiber Technol.19(5), 482–485 (2013).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005).
[CrossRef] [PubMed]

Other (4)

J. Weitenberg, P. Rußbüldt, I. Pupeza, T. Udem, H.-D. Hoffmann, and R. Poprawe are preparing a manuscript to be called “Geometrical on-axis access to high-finesse resonators by quasi-imaging.”

I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, and V. S. Yakovlevare preparing a manuscript to be called “Cavity-enhanced high-harmonic generation with spatially tailored driving fields.”

German Patent DE10029110B4 2006.05.18.

D. Esser, H.-D. Hoffmann, B. Jungbluth, and R. Poprawe, “Regenerative amplification of laser diode pulses with variable pulse duration from ps to ns range,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Europe (Institute of Electrical and Electronics Engineers, München, 2003), p. 34.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of Inverse Laser Drilling.

Fig. 2
Fig. 2

Laser-manufactured mirror substrates with 25 mm diameter: circular holes with undercut (a), slits without undercut (b), slits with undercut (c).

Fig. 3
Fig. 3

a) Microscopy of a 120 µm wide slit structured with the QSRO. The distance between the outer limits of the shell breaks is ~350 µm. b) Microscopy of a 220 µm wide slit structured with the DSRA. The distance between the outer limits of the shell breaks is ~400 µm.

Fig. 4
Fig. 4

Substrates between crossed polarizers. Stress in the substrate after laser processing is revealed (a, marked by the white dashed circle), after tempering is not detectable any more (b).

Fig. 5
Fig. 5

Surface profiles around slits after processing (a), after tempering (b) and after polishing (c). See text for further explanations.

Fig. 6
Fig. 6

Laser-drilled holes with different diameters. a) ~160 µm inner diameter and ~200 µm outer diameter. b) ~60 µm inner diameter and ~100 µm outer diameter.

Fig. 7
Fig. 7

Surface profile of area around the circular drilling. No further treatment has been done after processing. The height of the deformation is about one fourth compared to the slits and the affected area is smaller.

Fig. 8
Fig. 8

Deformation of the mirror surface (with sphere subtracted) assumed for the calculations, with hole radius or half slit width a, and height h and transverse extension l of the deformation (a). Enhancement P (circulating power to incident power) as a function of the height h of the deformation in an enhancement resonator with circulating fundamental mode and hole mirror (b) and in a quasi-imaging resonator with a circulating slit mode and slit mirror (c). The inlays show the transverse mode at the position of the hole or slit mirror. The transverse extension of the deformation is assumed to be l/w = 0.03 for the hole and l/w = 0.2 for the slit. For a beam radius of w = 2.7 mm as in [7] and w = 1 mm as in [10] this corresponds to l = 0.08 mm (compare Fig. 7) and l = 0.2 mm (compare Fig. 5), respectively. For the simulation of the slit mode, a resonator loss factor of R = 0.99955 and an aperture with A/w = 3.0, as well as spherical aberration (0.5 mrad per focusing mirror) are included (see [11] for details). The spherical aberration leads to a slight asymmetry of the curves in (c).

Tables (2)

Tables Icon

Table 1 Laser specifications

Tables Icon

Table 2 Distance between the slit’s edge and the outer limits of edge chips

Metrics