Abstract

An imaging technique has been developed to image a color picture hidden behind a 5 mm thick, highly scattering layer with low transmittance of 0.24%. Small vibrations (< 1 µm) were induced in the hidden picture, causing a time-varying speckle pattern on the scattering layer in the front, which is captured by a CCD camera and quantified as speckle contrast difference (SCD). With two lasers at 543 nm and 633 nm, the imaging system raster-scans the front of the scattering layer and the resulting SCD image reveals the color features of the hidden picture.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
    [CrossRef]
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
    [CrossRef]
  3. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  4. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
    [CrossRef] [PubMed]
  5. T. S. Leung and S. Jiang, “Classifying hidden colors behind an opaque layer with the acoustically modulated laser speckle contrast technique,” Opt. Express21(17), 20197–20209 (2013).
    [CrossRef] [PubMed]
  6. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
    [CrossRef] [PubMed]
  7. S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys.10(5), 579–581 (1983).
    [CrossRef] [PubMed]
  8. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
    [CrossRef] [PubMed]
  9. G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol.47(8), 1219–1236 (2002).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

2010 (1)

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

2007 (1)

2002 (1)

G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol.47(8), 1219–1236 (2002).
[CrossRef] [PubMed]

1983 (1)

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys.10(5), 579–581 (1983).
[CrossRef] [PubMed]

Bentzen, S. M.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys.10(5), 579–581 (1983).
[CrossRef] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Blasi, A.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Clement, G. T.

G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol.47(8), 1219–1236 (2002).
[CrossRef] [PubMed]

Draijer, M.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

Elwell, C. E.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

Hynynen, K.

G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol.47(8), 1219–1236 (2002).
[CrossRef] [PubMed]

Jiang, S.

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

Leung, T. S.

Lloyd-Fox, S.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Steenbergen, W.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

van Leeuwen, T.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009).
[CrossRef] [PubMed]

Med. Phys. (1)

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys.10(5), 579–581 (1983).
[CrossRef] [PubMed]

Nat. Photonics (2)

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Neurosci. Biobehav. Rev. (1)

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (1)

G. T. Clement and K. Hynynen, “A non-invasive method for focusing ultrasound through the human skull,” Phys. Med. Biol.47(8), 1219–1236 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: LA1 – red laser; LA2 – green laser; B – dichroic filter ; M – mirror; I – iris; L – lens; S – scattering layer; P – color picture; C – connecting rod with a 2 mm screw at the tip; LS – loudspeaker; FG – function generator; F – Neutral density filter; CCD – CCD camera, T – 2-axes translation stage, PC – computer, and a photo of the scattering layer.

Fig. 2
Fig. 2

Speckle image: (a) the original speckle intensity image (1344 × 1024 pixels = 4.3 × 3.3 mm), part of it (white box) cropped for analysis; (b) the cropped speckle contrast C ( = σ / <I>) image (1100 × 1024 pixels = 3.5 × 3.3 mm).

Fig. 3
Fig. 3

Spatial resolution assessment: (a) the edge spread function, inset is the color picture hidden behind the scattering layer; (b) the line spread function (LSF) of the horizontal and vertical scans; the LSFs of the hidden pictures with different color combinations using (c) the red laser and (d) the green laser; the LSFs for different thicknesses of the scattering layers using (e) the red laser and (f) the green laser. (Insets are the hidden color pictures.)

Fig. 4
Fig. 4

Hidden pictures and imaging results, (I): character ‘A’ as the hidden picture using the red laser – (a) the intensity image, (b) the hidden black and white picture and (c) the ΔC image; and (II) color blocks as the hidden picture using the red and green lasers separately – (d) the combined intensity RGB image, (e) the hidden color picture, (f) the combined ΔC RGB image, (g) the intensity image using the red laser, (h) the intensity image using the green laser, (i) the ΔC image using the red laser, and (j) the ΔC image using the green laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔC C b 2 +2M C b 1+M

Metrics