Abstract

A combined cavity ring-down (CRD) and spectrophotometry technique is developed to measure with sufficiently high accuracy the reflectance of any practically fabricated optical laser component with reflectance ranging from below 0.01% to over 99.999%. In this combined technique, a CRD configuration is employed to measure reflectance higher than 99%, and a conventional spectrophotometric configuration, which is formed by simply removing the rear cavity mirror from the CRD configuration, is applied to measure reflectance below 99%. Uncertainties below 0.0001% for reflectance over 99.99% and below 0.3% for reflectance below 99% are experimentally achieved with CRD and spectrophotometry configurations, respectively, of one single experimental setup.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ISO 15368:2001(E), “Optics and optical instruments-measurement of reflectance of plane surfaces and transmittance of plane parallel elements,” International Organization for Standardization, Switzerland.
  2. C. Castellini, G. Emiliani, E. Masetti, P. Poggi, and P. P. Polato, “Characterization and calibration of a variable-angle absolute reflectometer,” Appl. Opt.29(4), 538–543 (1990).
    [CrossRef] [PubMed]
  3. I. W. Smith, “Reflectometer for laser mirrors with accuracy better than 10-4.,” Appl. Opt.17(16), 2476–2477 (1978).
    [CrossRef] [PubMed]
  4. O. Arnon and P. Baumeister, “Versatile high-precision multiple-pass reflectometer,” Appl. Opt.17(18), 2913–2916 (1978).
    [CrossRef] [PubMed]
  5. A. Voss, W. Plass, and A. Giesen, “Simple high-precision method for measuring the specular reflectance of optical components,” Appl. Opt.33(36), 8370–8374 (1994).
    [CrossRef] [PubMed]
  6. ISO 13697:2006(E), “Optics and photonics – Lasers and laser-related equipment – Test methods for specular reflectance of optical laser components,” International Organization for Standardization, Switzerland.
  7. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt.19(1), 144–147 (1980).
    [CrossRef] [PubMed]
  8. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt.23(8), 1238–1245 (1984).
    [CrossRef] [PubMed]
  9. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett.17(5), 363–365 (1992).
    [CrossRef] [PubMed]
  10. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultralow-loss mirror of the parts-in-106 level at 1064 nm,” Opt. Lett.20(6), 530–532 (1995).
    [CrossRef] [PubMed]
  11. Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
    [CrossRef]
  12. A. Duparré and D. Ristau, “Optical interference coatings 2010 measurement problem,” Appl. Opt.50(9), C172–C177 (2011).
    [CrossRef] [PubMed]
  13. L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
    [CrossRef]
  14. H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, (Academic Press, 1985).
  15. Y. Gong and B. Li, “Diode laser based continuous-wave cavity ring-down technique for high reflectivity measurement,” Proc. SPIE6723, 672356, 672356-6 (2007).
    [CrossRef]
  16. http://www.perkinelmer.com/IN/CMSResources/Images/44-74856TCH_LinearityMeasurementLAMBDAHellmaFilters.pdf .

2011 (1)

2008 (1)

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
[CrossRef]

2007 (1)

Y. Gong and B. Li, “Diode laser based continuous-wave cavity ring-down technique for high reflectivity measurement,” Proc. SPIE6723, 672356, 672356-6 (2007).
[CrossRef]

2005 (1)

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

1995 (1)

1994 (1)

1992 (1)

1990 (1)

1984 (1)

1980 (1)

1978 (2)

Anderson, D. Z.

Arnon, O.

Baumeister, P.

Benard, D. J.

Castellini, C.

Duparré, A.

Emiliani, G.

Frisch, J. C.

Gao, L.

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

Giesen, A.

Gong, Y.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
[CrossRef]

Y. Gong and B. Li, “Diode laser based continuous-wave cavity ring-down technique for high reflectivity measurement,” Proc. SPIE6723, 672356, 672356-6 (2007).
[CrossRef]

Han, Y.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
[CrossRef]

Herbelin, J. M.

Kataoka, I.

Kimble, H. J.

Kitajima, N.

Kwok, M. A.

Lalezari, R.

Li, B.

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
[CrossRef]

Y. Gong and B. Li, “Diode laser based continuous-wave cavity ring-down technique for high reflectivity measurement,” Proc. SPIE6723, 672356, 672356-6 (2007).
[CrossRef]

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

Masetti, E.

Masser, C. S.

McKay, J. A.

Mitake, T.

Nakamura, K.

Plass, W.

Poggi, P.

Polato, P. P.

Rempe, G.

Ristau, D.

Sekiguchi, H.

Smith, I. W.

Spencer, D. J.

Thompson, R. J.

Ueda, A.

Ueda, K.

Uehara, N.

Ueunten, R. H.

Urevig, D. S.

Voss, A.

Xiong, S.

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

Zhang, Y.

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

Y. Gong, B. Li, and Y. Han, “Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity,” Appl. Phys. B93(2-3), 355–360 (2008).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

L. Gao, S. Xiong, B. Li, and Y. Zhang, “High reflectivity measurement with cavity ring-down technique,” Proc. SPIE5963, 59632F, 59632F-8 (2005).
[CrossRef]

Y. Gong and B. Li, “Diode laser based continuous-wave cavity ring-down technique for high reflectivity measurement,” Proc. SPIE6723, 672356, 672356-6 (2007).
[CrossRef]

Other (4)

http://www.perkinelmer.com/IN/CMSResources/Images/44-74856TCH_LinearityMeasurementLAMBDAHellmaFilters.pdf .

H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, (Academic Press, 1985).

ISO 15368:2001(E), “Optics and optical instruments-measurement of reflectance of plane surfaces and transmittance of plane parallel elements,” International Organization for Standardization, Switzerland.

ISO 13697:2006(E), “Optics and photonics – Lasers and laser-related equipment – Test methods for specular reflectance of optical laser components,” International Organization for Standardization, Switzerland.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) CRD and (b) spectrophotometry configurations for reflectance measurements.

Fig. 2
Fig. 2

Reflectance spectra of Samples #4 and #5 in the 500nm-700nm range measured with Lambda 1050 spectrophotometer.

Fig. 3
Fig. 3

The reflectance of Sample #2 measured by CRD configuration with different RDC lengths.

Fig. 4
Fig. 4

The reflectance of Sample #3 measured by CRD configuration, SP configuration, and Lambda 1050.

Tables (2)

Tables Icon

Table 1 Advantages and disadvantages of spectrophotometry, laser ratiometry, and cavity ring-down techniques for reflectance measurements

Tables Icon

Table 2 Comparison of reflectance values measured with CRD and spectrophotometry configurations, and Lambda 1050 spectrophotometer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ= L cln(R) L c(1R) .
u( R ) R =( 1R ) u 2 ( L ) L 2 + u 2 ( τ ) τ 2 .
R=exp( L 0 c τ 0 L cτ ).
R=M P PD1 P PD2 .

Metrics