Abstract

We demonstrate the bending effect of microfiber on interference fringes in a compact taper-based modal interferometer and sensitivity for refractive index (RI) measurement. For the bend curvature ranging from 0 to 0.283 mm−1, the measured RI sensitivity distinctively increases from 342.5 nm/RIU (refractive-index unit) to 1192.7nm/RIU around RI = 1.333 and from 3847.1 nm/RIU to 11006.0 nm/RIU around RI = 1.430, respectively. Theoretical analysis reveals that such enhancement is determined by the dispersion property of the intermodal index rather than other parameters, such as the variation of the straightforward evanescent field. The magnitude of sensitivity varies as a function of the microfiber bend curvature. Approaching a critical curvature (the intermodal-index dispersion factor approaches zero), the sensitivity is significantly enhanced, exhibiting great potential in RI sensing areas.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt.38(16), 3450–3459 (1999).
    [CrossRef] [PubMed]
  2. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
    [CrossRef]
  3. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
    [CrossRef] [PubMed]
  4. Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
    [CrossRef]
  5. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
    [CrossRef]
  6. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
    [CrossRef]
  7. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt.50(28), 5503–5507 (2011).
    [CrossRef] [PubMed]
  8. M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
    [CrossRef]
  9. Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]
  10. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett.37(11), 1974–1976 (2012).
    [CrossRef] [PubMed]
  11. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B29(5), 1136–1140 (2012).
    [CrossRef]
  12. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=132856 .
    [CrossRef] [PubMed]
  13. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
    [CrossRef]
  14. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express17(24), 21882–21890 (2009).
    [CrossRef] [PubMed]
  15. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
    [CrossRef] [PubMed]
  16. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
    [CrossRef] [PubMed]
  17. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt.24(7), 945–950 (1985).
    [CrossRef] [PubMed]
  18. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. A66(3), 216–220 (1976).
    [CrossRef]
  19. M. Koshiba and Y. Tsuji, “Curvillinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol.18(5), 737–743 (2000).
    [CrossRef]
  20. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).
  21. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974).
    [CrossRef]

2012 (3)

2011 (4)

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011).
[CrossRef] [PubMed]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt.50(28), 5503–5507 (2011).
[CrossRef] [PubMed]

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
[CrossRef] [PubMed]

2010 (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

2009 (3)

H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express17(24), 21882–21890 (2009).
[CrossRef] [PubMed]

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

2000 (1)

1999 (1)

1985 (1)

1976 (1)

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. A66(3), 216–220 (1976).
[CrossRef]

1974 (1)

Brambilla, G.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

Cardenas-Sevilla, G. A.

Cassidy, D. T.

Chang, Y.-L.

Choi, H. Y.

Chu, J.

Ding, M.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Dong, X.

Feng, J.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Frazao, O.

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

Gao, S.

Guan, B.-O.

Hill, K. O.

Jiang, L.

Jin, L.

Jin, W.

Jin, Y.

Johnson, D. C.

Jorge, P. A. S.

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

Kim, M. J.

Koshiba, M.

Kou, J.-L.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Latifi, H.

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

Lee, B. H.

Li, B.

Li, J.

Loock, H. P.

Lu, Y.

Lu, Y.-Q.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Mansuripur, M.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

Marcuse, D.

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. A66(3), 216–220 (1976).
[CrossRef]

Martinez-Rios, A.

Monzon-Hernandez, D.

Nishii, J.

Palmer, K. F.

Quan, Z.

Ran, Y.

Salceda-Delgado, G.

Shen, C.

Sun, L.-P.

Tian, Z. B.

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

Tsai, H.

Tsai, H. L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
[CrossRef] [PubMed]

Tsuji, Y.

Villatoro, J.

Wang, J.

Wang, M.

Wang, S.

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Williams, D.

Xiao, H.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
[CrossRef] [PubMed]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt.50(28), 5503–5507 (2011).
[CrossRef] [PubMed]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

Xu, F.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Xuan, H.

Yam, S. S.

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

Yang, J.

You, Y.

Zhang, M.

Zhong, C.

Zhou, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
[CrossRef] [PubMed]

Zibaii, M.

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

Zou, X.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (4)

M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011).
[CrossRef]

Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009).
[CrossRef]

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. A66(3), 216–220 (1976).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Sensors (Basel) (2)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011).
[CrossRef] [PubMed]

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012).
[CrossRef] [PubMed]

Other (1)

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a compact, single taper-based modal interferometer with a microfiber bend. (b) Equivalent refractive index profile in bent microfiber. (c) Picture of a fabricated structure.

Fig. 2
Fig. 2

(a) Measured (solid curves) and modeled (dashed curves) transmission spectra of the interferometer at curvatures: ① ξ = 0 mm−1 and ② ξ = 0.15mm−1, respectively. Inset shows the profile of the fabricated taper-based interferometer. (b) Measured (points) and modeled (solid curves) dip wavelengths in respect of bend curvature.

Fig. 3
Fig. 3

(a) Transmission spectra of an interferometer with different curvatures immersed in solution with indices of 1.333 (solid curves) and 1.384 (dashed curves), respectively. (b) Measured (points) and modeled (curves) dip wavelength shifts as functions of external RI at different curvatures.

Fig. 4
Fig. 4

(a) Modeled sensitivity as a function of bend curvature at wavelength 1350nm. The experimental points are also marked. (b) Dependence of the critical curvature on the fiber diameter at wavelength 1350nm and the wavelength at fiber diameter 20μm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ=( 2π /λ )ΔnL
n =n 1+2xξ
S= dλ d n ex = λ Γ Δn n ex

Metrics