Abstract
The characteristics of the transient and polarization must be considered for a complete and correct description of shortpulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of shortpulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steadystate vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of shortpulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.
© 2013 Optical Society of America
Full Article  PDF ArticleOSA Recommended Articles
Yong Zhang, HongLiang Yi, Ming Xie, and HePing Tan
J. Opt. Soc. Am. A 31(4) 818828 (2014)
Xun Ben, HongLiang Yi, and HePing Tan
Appl. Opt. 53(7) 14271441 (2014)
Yong Zhang, Hongliang Yi, and Heping Tan
Opt. Express 21(21) 2453224549 (2013)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication

A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref] [PubMed]  X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref] [PubMed]  E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron. 51(4), 301–314 (2008).
[Crossref]  S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]  M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]  J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer 53(1920), 3799–3806 (2010).
[Crossref]  J. M. Wang and C. Y. Wu, “Secondorderaccurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf. 38(9), 1213–1218 (2011).
[Crossref]  M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in threedimensional highlyscattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl. 59, 653–671 (2011).
 Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
 P. F. Hsu, “Effects of multiple scattering and reflective boundary on the transient radiative transfer process,” Int. J. Therm. Sci. 40(6), 539–549 (2001).
[Crossref]  C. Y. Wu, “Monte Carlo simulation of transient radiative transfer in a medium with a variable refractive index,” Int. J. Heat Mass Transfer 52(1920), 4151–4159 (2009).
[Crossref]  P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
 R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]  J. C. Chai, “Onedimensional transient radiation heat transfer modeling using a finitevolume method,” Numer Heat Tranf. BFundam. 44(2), 187–208 (2003).
[Crossref]  J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]  S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]  C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43(11), 2009–2020 (2000).
[Crossref]  S. H. Wu and C. Y. Wu, “Timeresolved spatial distribution of scattered radiative energy in a twodimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer 44(14), 2611–2619 (2001).
[Crossref] 
G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7(8), 1519–1527 (1968).
[Crossref] [PubMed]  R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 41(2), 117–145 (1989).
[Crossref]  K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991).
[Crossref]  C. E. Siewert, “A discreteordinates solution for radiativetransfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 64(3), 227–254 (2000).
[Crossref]  J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]  F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]  H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]  X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref] [PubMed] 
M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).
[Crossref] [PubMed]  R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]  C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref] 
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref] [PubMed]  J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]  C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref] 
M. Sakami and A. Dogariu, “Polarized lightpulse transport through scattering media,” J. Opt. Soc. Am. A 23(3), 664–670 (2006).
[Crossref] [PubMed]  Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182(4), 940–945 (2011).
[Crossref]  S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
 H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
 M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref] [PubMed]  R. Green, Spherical Astronomy (Cambridge University, 1985).
 B. A. Whitney, “Monte Carlo radiative transfer,” Arxiv preprint arXiv: 1104.4990 (2011).
 K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys. 37(1), 1–13 (1986).
[Crossref]  G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34(8), 1453–1472 (1989).
[Crossref]  P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]  E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
2013 (1)
F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]
2011 (4)
Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182(4), 940–945 (2011).
[Crossref]
J. M. Wang and C. Y. Wu, “Secondorderaccurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf. 38(9), 1213–1218 (2011).
[Crossref]
M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in threedimensional highlyscattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl. 59, 653–671 (2011).
S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]
2010 (4)
J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer 53(1920), 3799–3806 (2010).
[Crossref]
C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref]
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
2009 (1)
C. Y. Wu, “Monte Carlo simulation of transient radiative transfer in a medium with a variable refractive index,” Int. J. Heat Mass Transfer 52(1920), 4151–4159 (2009).
[Crossref]
2008 (1)
E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron. 51(4), 301–314 (2008).
[Crossref]
2007 (3)
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]
2006 (2)
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
M. Sakami and A. Dogariu, “Polarized lightpulse transport through scattering media,” J. Opt. Soc. Am. A 23(3), 664–670 (2006).
[Crossref]
[PubMed]
2005 (2)
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref]
[PubMed]
C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref]
2004 (3)
R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]
J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]
M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).
[Crossref]
[PubMed]
2003 (3)
J. C. Chai, “Onedimensional transient radiation heat transfer modeling using a finitevolume method,” Numer Heat Tranf. BFundam. 44(2), 187–208 (2003).
[Crossref]
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
2002 (3)
M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]
H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]
X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref]
[PubMed]
2001 (4)
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref]
[PubMed]
P. F. Hsu, “Effects of multiple scattering and reflective boundary on the transient radiative transfer process,” Int. J. Therm. Sci. 40(6), 539–549 (2001).
[Crossref]
S. H. Wu and C. Y. Wu, “Timeresolved spatial distribution of scattered radiative energy in a twodimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer 44(14), 2611–2619 (2001).
[Crossref]
2000 (3)
C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43(11), 2009–2020 (2000).
[Crossref]
Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
C. E. Siewert, “A discreteordinates solution for radiativetransfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 64(3), 227–254 (2000).
[Crossref]
1991 (1)
K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991).
[Crossref]
1989 (2)
R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 41(2), 117–145 (1989).
[Crossref]
G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34(8), 1453–1472 (1989).
[Crossref]
1986 (1)
K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys. 37(1), 1–13 (1986).
[Crossref]
1968 (1)
Adams, C. N.
G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34(8), 1453–1472 (1989).
[Crossref]
Akamatsu, M.
M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in threedimensional highlyscattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl. 59, 653–671 (2011).
Budak, Y. P.
Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182(4), 940–945 (2011).
[Crossref]
Chai, J. C.
J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]
J. C. Chai, “Onedimensional transient radiation heat transfer modeling using a finitevolume method,” Numer Heat Tranf. BFundam. 44(2), 187–208 (2003).
[Crossref]
Chaikovskaya, L. I.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
Chowdhary, J.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Chugh, P.
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
Cornet, C.
C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref]
Crofcheck, C.
J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]
Davis, A. B.
F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]
Davis, C.
C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref]
Deuze, J. L.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Dogariu, A.
M. Sakami and A. Dogariu, “Polarized lightpulse transport through scattering media,” J. Opt. Soc. Am. A 23(3), 664–670 (2006).
[Crossref]
[PubMed]
Emde, C.
C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref]
Evans, K. F.
K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991).
[Crossref]
Garcia, R. D. M.
R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 41(2), 117–145 (1989).
[Crossref]
Guo, Z. X.
M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in threedimensional highlyscattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl. 59, 653–671 (2011).
Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
Harwood, R.
C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref]
Herman, M.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Hsu, P. F.
J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]
M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]
P. F. Hsu, “Effects of multiple scattering and reflective boundary on the transient radiative transfer process,” Int. J. Therm. Sci. 40(6), 539–549 (2001).
[Crossref]
Hu, Y. X.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Ilyushin, Y. A.
Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182(4), 940–945 (2011).
[Crossref]
Ishimaru, A.
A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref]
[PubMed]
Ishimoto, H.
H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]
Jacques, S. L.
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref]
[PubMed]
Jaruwatanadilok, S.
A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref]
[PubMed]
Josset, D. B.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Katsev, I. L.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
Kattawar, G. W.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34(8), 1453–1472 (1989).
[Crossref]
G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7(8), 1519–1527 (1968).
[Crossref]
[PubMed]
Korytin, A. I.
E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron. 51(4), 301–314 (2008).
[Crossref]
Kuga, Y.
A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref]
[PubMed]
Kumar, P.
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
Kumar, S.
Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
Labonnote, L. C.
C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref]
Lafrance, B.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Lam, Y. C.
J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]
Lenoble, J.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Lotsberg, J. K.
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
Lucker, P. L.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Mahanta, P.
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
Maruyama, S.
S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]
Masuda, K.
H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]
K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys. 37(1), 1–13 (1986).
[Crossref]
Mengüç, M. P.
J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]
R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]
Mishra, C. S.
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
Mishra, S. C.
S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
Mitra, K.
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]
Muthukumaran, R.
S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]
Plass, G. N.
G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7(8), 1519–1527 (1968).
[Crossref]
[PubMed]
Prahl, S. A.
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref]
[PubMed]
Prikhach, A. S.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
RamellaRoman, J. C.
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref]
[PubMed]
Rath, P.
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
Roy, N. K.
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
Saha, U. K.
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
Sakami, M.
M. Sakami and A. Dogariu, “Polarized lightpulse transport through scattering media,” J. Opt. Soc. Am. A 23(3), 664–670 (2006).
[Crossref]
[PubMed]
M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]
San, K. C.
Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
Santer, R.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Sergeeva, E. A.
E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron. 51(4), 301–314 (2008).
[Crossref]
Shekhawat, N. S.
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
Siewert, C. E.
C. E. Siewert, “A discreteordinates solution for radiativetransfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 64(3), 227–254 (2000).
[Crossref]
R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 41(2), 117–145 (1989).
[Crossref]
Singh, R.
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
Sommersten, E. R.
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
Stamnes, J. J.
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
Stamnes, K.
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
Stephens, G. L.
K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991).
[Crossref]
Sun, C. W.
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
Swamy, J. N.
J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]
Szczap, F.
C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref]
Takashima, T.
K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys. 37(1), 1–13 (1986).
[Crossref]
Tanre, D.
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
Trepte, C. R.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Tynes, H. H.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
Vaillon, R.
R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]
Wang, J. M.
J. M. Wang and C. Y. Wu, “Secondorderaccurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf. 38(9), 1213–1218 (2011).
[Crossref]
J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer 53(1920), 3799–3806 (2010).
[Crossref]
Wang, L. V.
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref]
[PubMed]
Wang, X. D.
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref]
[PubMed]
West, R. A.
F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]
Wong, B. T.
R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]
Wu, C. Y.
J. M. Wang and C. Y. Wu, “Secondorderaccurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf. 38(9), 1213–1218 (2011).
[Crossref]
J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer 53(1920), 3799–3806 (2010).
[Crossref]
C. Y. Wu, “Monte Carlo simulation of transient radiative transfer in a medium with a variable refractive index,” Int. J. Heat Mass Transfer 52(1920), 4151–4159 (2009).
[Crossref]
S. H. Wu and C. Y. Wu, “Timeresolved spatial distribution of scattered radiative energy in a twodimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer 44(14), 2611–2619 (2001).
[Crossref]
C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43(11), 2009–2020 (2000).
[Crossref]
Wu, S. H.
S. H. Wu and C. Y. Wu, “Timeresolved spatial distribution of scattered radiative energy in a twodimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer 44(14), 2611–2619 (2001).
[Crossref]
C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43(11), 2009–2020 (2000).
[Crossref]
Xu, F.
F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]
Xu, M.
M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).
[Crossref]
[PubMed]
Yang, C. C.
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
Zege, E. P.
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
Zhai, P. W.
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
Appl. Opt. (3)
A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40(30), 5495–5502 (2001).
[Crossref]
[PubMed]
G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7(8), 1519–1527 (1968).
[Crossref]
[PubMed]
H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001).
[Crossref]
[PubMed]
Comput. Phys. Commun. (1)
Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182(4), 940–945 (2011).
[Crossref]
IEEE Trans. Geosci. Rem. Sens. (1)
C. Davis, C. Emde, and R. Harwood, “A 3D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens. 43(5), 1096–1101 (2005).
[Crossref]
Int. Commun. Heat Mass Transf. (2)
J. M. Wang and C. Y. Wu, “Secondorderaccurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf. 38(9), 1213–1218 (2011).
[Crossref]
S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf. 38(3), 291–297 (2011).
[Crossref]
Int. J. Heat Mass Transfer (5)
C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer 43(11), 2009–2020 (2000).
[Crossref]
S. H. Wu and C. Y. Wu, “Timeresolved spatial distribution of scattered radiative energy in a twodimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer 44(14), 2611–2619 (2001).
[Crossref]
C. Y. Wu, “Monte Carlo simulation of transient radiative transfer in a medium with a variable refractive index,” Int. J. Heat Mass Transfer 52(1920), 4151–4159 (2009).
[Crossref]
J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer 53(1920), 3799–3806 (2010).
[Crossref]
S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the shortpulse laser transport through a participating medium,” Int. J. Heat Mass Transfer 49(1112), 1820–1832 (2006).
[Crossref]
Int. J. Therm. Sci. (1)
P. F. Hsu, “Effects of multiple scattering and reflective boundary on the transient radiative transfer process,” Int. J. Therm. Sci. 40(6), 539–549 (2001).
[Crossref]
J. Biomed. Opt. (2)
X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: timeresolved Monte Carlo simulations and experiments,” J. Biomed. Opt. 8(4), 608–617 (2003).
[Crossref]
[PubMed]
X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002).
[Crossref]
[PubMed]
J. Opt. Soc. Am. A (1)
M. Sakami and A. Dogariu, “Polarized lightpulse transport through scattering media,” J. Opt. Soc. Am. A 23(3), 664–670 (2006).
[Crossref]
[PubMed]
J. Quant. Spectrosc. Radiat. Transf. (13)
R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particleladen semitransparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf. 84(4), 383–394 (2004).
[Crossref]
J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf. 104(2), 277–287 (2007).
[Crossref]
C. Cornet, L. C. Labonnote, and F. Szczap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf. 111(1), 174–186 (2010).
[Crossref]
R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 41(2), 117–145 (1989).
[Crossref]
K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991).
[Crossref]
C. E. Siewert, “A discreteordinates solution for radiativetransfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 64(3), 227–254 (2000).
[Crossref]
J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf. 107(3), 479–507 (2007).
[Crossref]
F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a sphericalshell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 117, 59–70 (2013).
[Crossref]
H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf. 72(4), 467–483 (2002).
[Crossref]
M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through twodimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf. 73(25), 169–179 (2002).
[Crossref]
J. C. Chai, P. F. Hsu, and Y. C. Lam, “Threedimensional transient radiative transfer modeling using the finitevolume method,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 299–313 (2004).
[Crossref]
P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf. 111(78), 1025–1040 (2010).
[Crossref]
E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf. 111(4), 616–633 (2010).
[Crossref]
J. Thermophys. Heat Transf. (1)
Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of shortpulse laser transport in scattering media,” J. Thermophys. Heat Transf. 14, 504–511 (2000).
Limnol. Oceanogr. (1)
G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34(8), 1453–1472 (1989).
[Crossref]
Numer Heat Tranf. BFundam. (2)
R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of shortpulse laser transport through a participating medium,” Numer Heat Tranf. BFundam. 52(4), 373–385 (2007).
[Crossref]
J. C. Chai, “Onedimensional transient radiation heat transfer modeling using a finitevolume method,” Numer Heat Tranf. BFundam. 44(2), 187–208 (2003).
[Crossref]
Numer. Heat Tranf. Anal. Appl. (2)
P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl. 44, 183–197 (2003).
M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in threedimensional highlyscattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl. 59, 653–671 (2011).
Opt. Express (2)
M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12(26), 6530–6539 (2004).
[Crossref]
[PubMed]
J. C. RamellaRoman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005).
[Crossref]
[PubMed]
Pap. Meteorol. Geophys. (1)
K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys. 37(1), 1–13 (1986).
[Crossref]
Radiophys. Quantum Electron. (1)
E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron. 51(4), 301–314 (2008).
[Crossref]
Other (5)
S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
R. Green, Spherical Astronomy (Cambridge University, 1985).
B. A. Whitney, “Monte Carlo radiative transfer,” Arxiv preprint arXiv: 1104.4990 (2011).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (18)
Schematic of square pulse chain
Geometry of Scattering plane and Meridian planes. The photon’s direction of propagation before and after scattering is (
Schematic of the geometry of the model.
Comparison of transmittance and reflectance signals with respect to dimensionless time for different optical thickness: (a)
Comparison of computational accuracy between MCM and MCM_TSS.
Schematic of the coupled atmospherewater system with an oblique incident unpolarized beam.
Stokes vector elements just above the atmosphere–water interface for a collimated unpolarized incident beam.
Distributions of Stokes vector just above the atmosphere–water interface varying with time and direction.
Distributions of Stokes vector on the surface
Distributions of Stokes vector on the surface
Angular distributions of Stokes vector on the surface
Timeresolved Stokes vector on the surface A_{1}^{+} at three different directions for n = 1.44.
Angular distributions of Stokes vector on the surface
Timeresolved Stokes vector on the surface
Angular distributions of Stokes vector on the surface
Timeresolved Stokes vector on the surface
Timeresolved Stokes vector on the surface
Timeresolved Stokes vector on the surface
Tables (1)
Table 1 Comparison of computation time by MCM and MCM_TSS
Equations (29)
Equations on this page are rendered with MathJax. Learn more.