Abstract

Using finite-difference-time-domain simulation, we have studied the near-field effect of Germanium (Ge) subwavelength arrays designed in-plane with a normal incidence. Spectra of vertical electric field component normal to the surface show pronounced resonance peaks in an infrared range, which can be applied in a quantum well infrared photodetector. Unlike the near-field optics in metallic systems that are commonly related to surface plasmons, the intense vertical field along the surface of the Ge film can be interpreted as a combination of diffraction and waveguide theory. The existence of the enhanced field is confirmed by measuring the Fourier transform infrared spectra of fabricated samples. The positions of the resonant peaks obtained in experiment are in good agreement with our simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  5. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  6. B. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993).
    [CrossRef]
  7. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  8. T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
    [CrossRef]
  9. P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
    [CrossRef]
  10. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  11. M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
    [CrossRef]
  12. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
    [CrossRef] [PubMed]
  13. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  14. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
    [CrossRef]
  15. S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express20(5), 5622–5628 (2012).
    [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids: Index (Academic press, 1998).
  17. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  18. S. C. Lee, S. Krishna, and S. R. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
    [CrossRef] [PubMed]
  19. V. Canpean and S. Astilean, “Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays,” Lab Chip9(24), 3574–3579 (2009).
    [CrossRef] [PubMed]
  20. K.-L. Lee, S.-H. Wu, and P.-K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express17(25), 23104–23113 (2009).
    [CrossRef] [PubMed]
  21. H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
    [CrossRef]
  22. C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
    [CrossRef]
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  24. A. W. Snyder and J. Love, Optical waveguide theory (Springer, 1983).
  25. J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992).
    [CrossRef]
  26. L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
    [CrossRef]

2012

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express20(5), 5622–5628 (2012).
[CrossRef] [PubMed]

2010

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

2009

2008

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

2007

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

2005

2004

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

2002

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

1999

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

1998

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1993

B. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993).
[CrossRef]

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

1992

J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Ahn, S. I.

Andersson, J.

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992).
[CrossRef]

Andrews, A. M.

Astilean, S.

V. Canpean and S. Astilean, “Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays,” Lab Chip9(24), 3574–3579 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Borglind, J.

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

Brueck, S. R.

Canpean, V.

V. Canpean and S. Astilean, “Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays,” Lab Chip9(24), 3574–3579 (2009).
[CrossRef] [PubMed]

Chang, S.-H.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Detz, H.

Ebbesen, T.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Gansch, R.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Ghaemi, H.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Gray, S.

Grupp, D.

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Gu, F.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Haga, D.

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Iwahashi, S.

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

Kalchmair, S.

Krishna, S.

Lasser, G.

Lee, K.-L.

Lee, S. C.

Levine, B.

B. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993).
[CrossRef]

Lezec, H.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Lezec, H. J.

Liang, Y.

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

Lundqvist, L.

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992).
[CrossRef]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Mujagic, E.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Noda, S.

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Paska, Z.

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

Peng, C.

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Reininger, P.

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Sage, I.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Sakai, K.

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

Schatz, G.

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schrenk, W.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Strasser, G.

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Tong, L.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Treacy, M.

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Wasey, J. A.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Wei, P.-K.

Woerdman, J.

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Wolff, P.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, S.-H.

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Yin, X.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zederbauer, T.

Zhang, L.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Adv. Mater.

P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002).
[CrossRef]

Appl. Phys. Lett.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993).
[CrossRef]

J. Appl. Phys.

J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992).
[CrossRef]

B. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993).
[CrossRef]

J. Opt. Soc. Am B.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999).
[CrossRef]

Lab Chip

V. Canpean and S. Astilean, “Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays,” Lab Chip9(24), 3574–3579 (2009).
[CrossRef] [PubMed]

Nano Lett.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003).
[CrossRef]

Opt. Express

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012).
[CrossRef]

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Phys. Rev. Lett.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of Optical Constants of Solids: Index (Academic press, 1998).

A. W. Snyder and J. Love, Optical waveguide theory (Springer, 1983).

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the simulated periodic Ge stripes. The positions of the monitors are indicated in both the cross-sections and top views.

Fig. 2
Fig. 2

A comparison of the normalized Ez fields of periodic Ge stripes and periodic Au stripes with the lattice constant a = 2.9 μm, the width d = 1.5 μm, and the thickness t = 0.24 μm.

Fig. 3
Fig. 3

Cross-section distribution of EM field magnitude at the Part 1 peak in one period of the subwavelength arrays: (a) Ez and (b) Hy of periodic Ge stripes, and (c) Ez and (d) Hy of periodic Au stripes. The dashed rectangle indicates the area of Ge or Au. The source is set below the bottom side of each structure.

Fig. 4
Fig. 4

Cross-section distribution of EM field magnitude at the Part 2 peaks in one period of periodic Ge stripes: (a) Ez and (b) Hy at the 5150 cm−1 peak, and (c) Hy at the 6200 cm−1 peak. The dashed rectangle indicates the area of Ge. The source is set below the bottom side of each structure.

Fig. 5
Fig. 5

Ez field response of periodic Ge stripes with the change of different parameters: (a) the thickness t, (b) the width d, and (c) the lattice constant a. The red line indicates the standard structure with a = 2.9 μm, d = 1.5 μm, and t = 0.24 μm. The Part 1 peak of each curve is indicated by an asterisk.

Fig. 6
Fig. 6

(a) Schematic of a simple Ge waveguide model with d = 1.5 μm and t = 0.24 μm. Cross-section distributions of Hy magnitude at the 5150 cm−1 peak of the simplified Ge waveguide model with (b) bottom end irradiated, and (c) both ends irradiated. Cross-section distributions of Hy magnitude at the 5750 cm−1 peak with (d) the bottom end irradiated, and (e) both ends irradiated. The dashed rectangle indicates the area of Ge.

Fig. 7
Fig. 7

(a) Cross-section distributions of Hy magnitude of a single slit in a wide Ge film with slit width of 1.4 μm and thickness of 0.24 μm. The dashed rectangle indicates the area of Ge. (b) Geometry of the generation of the Part 2 peak.

Fig. 8
Fig. 8

A comparison of the simulation result and the measurement of a fabricated sample on an InP substrate with the parameters a = 3.2 μm, d = 2.8 μm, and t = 0.8 μm. (a) The SEM image of the fabricated Ge stripes. (b) The FTIR spectra of a comparison of transmitted intensity through periodic Ge stripes, smooth Ge film and the source (air). (c) The simulation results of Ez field response (up) and related transmission spectrum (down) of periodic Ge stripes. (d) The normalized transmission of periodic Ge stripes and smooth Ge film, respectively. The gray dashed line in (d) is a copy of simulated transmission spectrum in (c). The two designed peaks are both tagged by the symbol ‘*’.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ sp =a ε m ε d ε m + ε d
λ=a n sub
2 K z t+ δ IP + δ IIP =2mπ
{ tan δ IP 2 = ( n 1 n 3 ) 2 sin 2 θ i ( n 3 n 1 ) 2 cos θ i tan δ IIP 2 = ( n 1 n 2 ) 2 sin 2 θ i ( n 2 n 1 ) 2 cos θ i
K x = K 0 2 n 1 2 K z 2 (2π0.515 n 1 ) 2 K z 2 6.11
Mod e number 2t λ 0 n 1 2 n sub 2

Metrics