Abstract

We demonstrate enhanced three-dimensional photoacoustic imaging behind a scattering material by increasing the fluence in the ultrasound transducer focus. We enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium serves as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude. Using the enhanced optical intensity, we scan the object in two-dimensions before post-processing of the data to reconstruct the image. The temporal profile of the photoacoustic signal provides the information used to reconstruct the third dimension.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  2. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
    [CrossRef] [PubMed]
  3. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  4. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
    [CrossRef] [PubMed]
  5. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
    [CrossRef] [PubMed]
  6. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010).
    [CrossRef] [PubMed]
  7. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
    [CrossRef] [PubMed]
  8. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
    [CrossRef]
  9. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
    [CrossRef] [PubMed]
  10. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
    [CrossRef] [PubMed]
  11. K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
    [CrossRef] [PubMed]
  12. A. G. Bell, “Upon the production and reproduction of sound by light,” J. Soc. Telegr. Eng.9, 404–426 (1880).
  13. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  14. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett.23(8), 648–650 (1998).
    [CrossRef] [PubMed]
  15. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett.36(11), 2053–2055 (2011).
    [CrossRef] [PubMed]
  16. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix” arXiv:optics 1305.6246, (2013).
  17. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012).
    [CrossRef] [PubMed]
  18. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  19. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
    [CrossRef]

2013

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

2012

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef] [PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012).
[CrossRef] [PubMed]

2011

F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett.36(11), 2053–2055 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

2010

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

2008

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

2007

2006

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

1998

1880

A. G. Bell, “Upon the production and reproduction of sound by light,” J. Soc. Telegr. Eng.9, 404–426 (1880).

Bell, A. G.

A. G. Bell, “Upon the production and reproduction of sound by light,” J. Soc. Telegr. Eng.9, 404–426 (1880).

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Brown, A. N.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Chen, Y. C.

Chitnis, P. V.

Conkey, D. B.

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef] [PubMed]

de Mul, F. F. M.

Dekker, A.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
[CrossRef] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Grange, R.

Hoelen, C. G. A.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

Hsieh, C.-L.

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Kong, F.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

Lee, K. K.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

Liu, L.

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

Mosk, A. P.

Piestun, R.

Pongers, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Psaltis, D.

C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Pu, Y.

Si, K.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Silverman, R. H.

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

J. Soc. Telegr. Eng.

A. G. Bell, “Upon the production and reproduction of sound by light,” J. Soc. Telegr. Eng.9, 404–426 (1880).

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013).
[CrossRef] [PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Nature

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Sci. Rep.

K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012).
[CrossRef] [PubMed]

Other

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix” arXiv:optics 1305.6246, (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for localized fluence-enhanced 3D photoacoustic imaging. The sample is placed in a glass water tank. A 532 nm pulsed laser illuminates an SLM that controls the input wavefront focused through the glass diffuser. A 90 MHz ultrasound transducer detects the photoacoustic signal from a sample placed behind the scattering material. The signal is amplified and digitized before being analyzed in the PC. The coordinate axis defines the axis in the following Figs. SLM: spatial light modulator; f1, f2: lenses; MO: microscope objective; GD: glass diffuser; S: sample.

Fig. 2
Fig. 2

(a) Experimental photoacoustic enhancement evolution of the optimization process. (b) Photoacoustic amplitude signal for a flat input phase mask (40 averaged samples). (c) Photoacoustic amplitude signal for the optimal input wavefront (5 averaged samples).

Fig. 3
Fig. 3

3D imaging of two capillaries. First row corresponds to the optimized phase mask. Second row corresponds to a flat phase projected on the SLM. (a),(d) 3D scan with a 2% intensity threshold; (b), (e) 2D scan; and (c), (f) 1D scan of the capillary tubes.

Metrics