Abstract

Bending performance of the Multi-trench Fibers (MTFs) has been investigated using the Finite Element Method. Numerical investigations show that MTFs can provide low-loss effective single mode operation under bent configuration, thanks to the resonant coupling of the Higher order Modes (HOMs). Large ratio between the HOMs and the Fundamental Mode (FM) losses can be ensured, although the ratio drops with increasing Effective Area (Aeff) of the FM. MTFs provide better losses ratio between the HOMs and the FM in comparison with other fibers like step-index, W-type, and parabolic fibers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” ASSP Paper AWA1 (2010).
  2. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  3. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006).
    [CrossRef] [PubMed]
  4. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
    [CrossRef] [PubMed]
  5. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  6. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol.27(15), 3010–3016 (2009).
    [CrossRef]
  7. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express12(7), 1313–1319 (2004).
    [CrossRef] [PubMed]
  8. L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
    [CrossRef] [PubMed]
  9. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fiber,” Opt. Express20(24), 26363–26372 (2012).
    [CrossRef]
  10. E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
    [CrossRef]
  11. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
    [CrossRef]
  12. C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
    [CrossRef]
  13. C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Extending the effective area of coiled all-solid silica single-mode Bragg fibers,” ECOC, Geneva, Switzerland, paper We.10.P1.02, (2011).
  14. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36(18), 3566–3568 (2011).
    [CrossRef] [PubMed]
  15. D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express21(2), 1448–1455 (2013).
    [CrossRef] [PubMed]
  16. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
    [CrossRef] [PubMed]
  17. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt.21(23), 4208–4213 (1982).
    [CrossRef] [PubMed]
  18. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt.17(13), 2080–2085 (1978).
    [CrossRef] [PubMed]
  19. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express21(20), 24039–24048 (2013).
    [CrossRef] [PubMed]

2013 (2)

2012 (1)

2011 (2)

2009 (4)

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol.27(15), 3010–3016 (2009).
[CrossRef]

2008 (2)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

2000 (1)

1982 (1)

1978 (1)

Aleshkina, S. S.

Baskiotis, C.

D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express21(2), 1448–1455 (2013).
[CrossRef] [PubMed]

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Bian, B.

Bouwmans, G.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Broeng, J.

Bubnov, M. M.

Chen, X.

Deguil-Robin, N.

Denisov, A. N.

Dianov, E. M.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

Dong, L.

Douay, M.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Eidam, T.

Fermann, M. E.

Fevrier, S.

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

Février, S.

Fini, J. M.

Foy, P.

Fu, L.

Gaponov, D. A.

Goldberg, L.

Gooijer, F.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Gray, S.

Gu, G.

Guryanov, A. N.

Hawkins, T.

Hawkins, T. W.

Jain, D.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Kawakami, S.

Kliner, D. A. V.

Kong, F.

Koplow, J. P.

Kumar, A.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Laptev, A. Y.

Li, M.-J.

Liem, A.

Likhachev, M. E.

Limpert, J.

Liu, A.

Lu, J.

Manek-Hönninger, I.

Marcinkevicius, A.

Marcuse, D.

Mcclane, D.

McKay, H. A.

Molin, D.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Nagano, K.

Nishida, S.

Nolte, S.

Ohta, M.

Otto, H.-J.

Petersson, A.

Popov, N. L.

Pryamikov, A. D.

Quiquempois, Y.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Rastogi, V.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Reich, M.

Röser, F.

Sahu, J. K.

Saitoh, K.

Salganskii, M. Y.

Salin, F.

Samson, B.

Schmidt, O.

Schreiber, T.

Shi, Y.

Sillard, P.

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Stutzki, F.

Suzuki, S.

Tünnermann, A.

Uspenskii, Y. A.

Walton, D. T.

Wang, J.

Wei, K.

Wirth, C.

Zellmer, H.

Zenteno, L. A.

Zhang, Z.

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(1), 20–29 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode-area optical fiber,” J. Opt. A, Pure Appl. Opt.10(1), 015303 (2008).
[CrossRef]

Opt. Express (9)

D. Jain, C. Baskiotis, and J. K. Sahu, “Mode area scaling with Multi-trench rod-type fibers,” Opt. Express21(2), 1448–1455 (2013).
[CrossRef] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding,” Opt. Express16(3), 1915–1922 (2008).
[CrossRef] [PubMed]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier,” Opt. Express12(7), 1313–1319 (2004).
[CrossRef] [PubMed]

L. Dong, H. A. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. E. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express17(11), 8962–8969 (2009).
[CrossRef] [PubMed]

F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, and L. Dong, “Mode area scaling with all-solid photonic bandgap fiber,” Opt. Express20(24), 26363–26372 (2012).
[CrossRef]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006).
[CrossRef] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005).
[CrossRef] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express21(20), 24039–24048 (2013).
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

C. Baskiotis, D. Molin, G. Bouwmans, F. Gooijer, P. Sillard, Y. Quiquempois, and M. Douay, “Bending behaviours of all-solid silica large mode area Bragg fibers,” Proc. SPIE7195, 719520 (2009).
[CrossRef]

Other (2)

C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Extending the effective area of coiled all-solid silica single-mode Bragg fibers,” ECOC, Geneva, Switzerland, paper We.10.P1.02, (2011).

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” ASSP Paper AWA1 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic cross-section of the MTF. Blue and white colours represent high and low-refractive index regions respectively. (b) Schematic of refractive index profile of the MTF.

Fig. 2
Fig. 2

Losses of the FM and the few HOMs in (a) unbent (b) bent fiber at 15cm bend radius as a function of the resonant ring thickness of the fiber having rc = 15µm, t = 2µm, and Δn = 0.006.

Fig. 3
Fig. 3

Ratio of the HOMs lowest losses level to the FM losses for different combinations of the first and the second resonant rings thicknesses for 30µm diameter core fiber with t = 2µm (a) Δn = 0.006 (b) Δn = 0.005. (c) and (d) shows the respective FM losses for these fiber parameters. X-axis presents thickness of the first resonant ring (d1) and Y-axis presents a parameter Y, where thickness of the second resonant ring is equal to d2 = 2*Y-d1. All Figs. has its own color scale.

Fig. 4
Fig. 4

(a) Losses of the FM and the lowest losses level of the HOMs as a function of the bend-radius (b) Aeff of the fundamental core mode as a function of the bend radius.

Fig. 5
Fig. 5

(a) and (c) Ratio of the HOMs lowest losses level to the FM losses for different combinations of the first and the second resonant rings thicknesses for 40µm and 46µm diameter core fibers respectively with t = 1.6µm and Δn = 0.006 at 20cm bend radius (b) and (d) shows the respective FM losses for these fiber parameters. X-axis presents the thickness of the first resonant ring (d1) and Y-axis presents a parameter Y, where the thickness of the second resonant ring is equal to d2 = 2*Y-d1. All Figs. has its own color scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

     n 2 eq ( r,φ )= n 2 ( r )*( 1+ 2r ρR cosφ ),

Metrics