Abstract

Spectral interferometry combined with near-field scanning optical microscopy is applied in the spatiotemporal characterization of femtosecond plasmon localized at gold nanostructures and surface plasmon polariton in an air-gap waveguide. Based on the plasmon response function in both the amplitude and the phase obtained from the measurements, we deterministically tailored the femtosecond plasmon pulse by shaping the femtosecond excitation laser pulses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008).
    [CrossRef] [PubMed]
  2. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
    [CrossRef] [PubMed]
  3. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68(10), 1500–1503 (1992).
    [CrossRef] [PubMed]
  4. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
    [CrossRef] [PubMed]
  5. T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
    [CrossRef]
  6. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
    [CrossRef]
  7. T. Harada, K. Matsuishi, Y. Oishi, K. Isobe, A. Suda, H. Kawan, H. Mizuno, A. Miyawaki, K. Midorikawa, and F. Kannari, “Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores,” Opt. Express19(14), 13618–13627 (2011).
    [CrossRef] [PubMed]
  8. G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
    [CrossRef] [PubMed]
  9. T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
    [CrossRef]
  10. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
    [CrossRef] [PubMed]
  11. F. Kannari, K. Matsuishi, T. Harada, J. Ohi, and Y. Oishi, “Characterization and control of femtosecond localized plasmon using spectral interferometry with SNOM or fringe-resolved autocorrelation with dark-field microscopy,” 36th European Conference and Exhibition on Optical Communication (ECOC2010), Torino, Sep. 19–22, 2010.
    [CrossRef]
  12. C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
    [CrossRef] [PubMed]

2012

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

2011

2010

G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
[CrossRef] [PubMed]

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

2009

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

2008

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008).
[CrossRef] [PubMed]

2007

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

2006

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

2002

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

1998

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

1992

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68(10), 1500–1503 (1992).
[CrossRef] [PubMed]

Anderson, A.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Brixner, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Deryckx, K. S.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

Geisler, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Giessen, H.

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

Harada, T.

Hecht, B.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

Huang, J. S.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

Isobe, K.

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68(10), 1500–1503 (1992).
[CrossRef] [PubMed]

Kannari, F.

Kawan, H.

Keitzl, T.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Kuhl, J.

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008).
[CrossRef] [PubMed]

Matsuishi, K.

Midorikawa, K.

Miyawaki, A.

Mizuno, H.

Molina-Terriza, G.

G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
[CrossRef] [PubMed]

Oishi, Y.

Pfeiffer, W.

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

Quidant, R.

G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
[CrossRef] [PubMed]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68(10), 1500–1503 (1992).
[CrossRef] [PubMed]

Raschke, M. B.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Razinskas, G.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Rewitz, C.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Schneider, J.

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Spindler, C.

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

Steinmeyer, G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Suda, A.

Tuchscherer, P.

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

Utikal, T.

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

Volpe, G.

G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
[CrossRef] [PubMed]

Voronine, D. V.

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

Xu, X. G.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

Zentgraf, T.

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

Nano Lett.

A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett.10(7), 2519–2524 (2010).
[CrossRef] [PubMed]

C. Rewitz, T. Keitzl, P. Tuchscherer, J. S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry,” Nano Lett.12(1), 45–49 (2012).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B73(12), 125437 (2006).
[CrossRef]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B79(19), 195441 (2009).
[CrossRef]

T. Utikal, T. Zentgraf, J. Kuhl, and H. Giessen, “Dynamics and dephasing of plasmon polaritons in metallic photonic crystal superlattices:Time- and frequency-resolved nonlinear autocorrelation measurements and simulations,” Phys. Rev. B76(24), 245107 (2007).
[CrossRef]

Phys. Rev. Lett.

G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010).
[CrossRef] [PubMed]

G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68(10), 1500–1503 (1992).
[CrossRef] [PubMed]

Science

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282(5390), 919–922 (1998).
[CrossRef] [PubMed]

Other

F. Kannari, K. Matsuishi, T. Harada, J. Ohi, and Y. Oishi, “Characterization and control of femtosecond localized plasmon using spectral interferometry with SNOM or fringe-resolved autocorrelation with dark-field microscopy,” 36th European Conference and Exhibition on Optical Communication (ECOC2010), Torino, Sep. 19–22, 2010.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup of SI-NSOM

Fig. 2
Fig. 2

(a) Designed Au nanocrosses, (b) SEM pictures of fabricated Au nanocrosses, (c) plasmon response functions of nanorods calculated by a FDTD numerical model for various aspect ratios R, and (d) plasmon resonance function predicted by FDTD calculation for an Au nanocross consisting of a longer arm with R = 3 and a shorter arm with R = 2.5. Spectrum of our excitation laser pulse is shown in Fig. 2(c).

Fig. 3
Fig. 3

An air-gap surface plasmon-polariton waveguide designed for experiment. An inset is a FDTD prediction on surface plasmon-polariton propagation in this waveguide. The SEM picture of fabricated waveguide is shown in the bottom.

Fig. 4
Fig. 4

Numerically predicted influence of Au-coated fiber probe on plasmon distribution: (a) Schematic cross-section and SEM picture of our NSOM fiber probe (although this picture is a fiber probe with 100-nm aperture, our measurements and FDTD calculations were done by the fiber probe with 50-nm aperture), (b) plasmon intensity spectrum of a 120 x 40 nm Au nanorod at center of NSOM probe apex with that without fiber probe, (c) plasmon intensity distribution for a 120 x 40 nm Au nanorod with and without an Au-coated NSOM probe, and (d) change in plasmon intensity spectrum at center of NSOM probe apex for various heights.

Fig. 5
Fig. 5

Plasmon spectral intensity (a) and plasmon spectral phase (b) at an R = 3 longer arm of the nanocross and at a plane reference point on the substrate. Plasmon response function can be obtained by ratio between two intensity spectra and difference between two phase spectra.

Fig. 6
Fig. 6

(a) Spectral plasmon response functions deduced from SI-NSOM measurement for R = 3. (b) Plasmon time history at excitation by Fourier transform limited laser pulse predicted using response function.

Fig. 7
Fig. 7

(a) Spectral plasmon response functions deduced from SI-NSOM measurement for R = 2.5. (b) Plasmon time history at excitation by Fourier transform limited laser pulse predicted using response function.

Fig. 8
Fig. 8

Measured plasmon pulses on a longer arm with R = 3 ((a)&(c)) and a shorter arm with R = 2.5 ((b)&(d)) excited by femtosecond laser pulse shaped to generate FTL pulse on a longer arm R = 3 ((a)&(b)) and a shorter arm with R = 2.5 ((c)&(d))

Fig. 9
Fig. 9

Numerically predicted plasmon pulses using experimentally obtained response functions on a longer arm with R = 3 ((a)&(c)) and a shorter arm with R = 2.5 ((b)&(d)) excited by femtosecond laser pulse shaped to generate a FTL pulse on a longer arm with R = 3 ((a)&(b)) and a shorter arm with R = 2.5 ((c)&(d))

Fig. 10
Fig. 10

Response functions measured at three exits of the surface plasmon-polariton waveguide shown in Fig. 3: (a) Exit 1, (b) Exit 2, and (3) Exit 3.

Fig. 11
Fig. 11

Time histories of surface plasmon-polariton pulses measured at the three exits of the waveguide in Fig. 3. The excitation laser pulse was shaped so that the Fourier transform limited plasmon appears at (a) Exit 1, (b) Exit 2, and (3) Exit 3, respectively, based on the obtained plasmon response functions (Fig. 10).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M ˜ ( r,ω )= E ˜ ( r,ω ) E ˜ ref * ( ω )=[ R ˜ ( r,ω ) E ˜ pump ( ω ) E ˜ ref * ( ω ) ],
R ˜ ( r,ω )= M ˜ ( r,ω ) / E ˜ ref * ( ω ) E ˜ pump ( ω ) = M ˜ ( r,ω ) | E ˜ ref ( ω ) | 2 .
E ˜ shape ( r,ω )= R ˜ ( r,ω ) S ˜ shape ( ω )= M ˜ ( r,ω ) | E ˜ ref ( ω ) | 2 S ˜ shape ( ω ).
M ˜ 0 ( ω )= E ˜ 0 ( ω ) E ˜ ref * ( ω ).
R ˜ ( r,ω )= M ˜ ( r,ω ) M ˜ 0 ( ω ) .

Metrics