Abstract

An efficient, acousto-optically Q-switched, and compact Yb:Gd3Ga5O12 laser oscillating around 1026 nm is demonstrated, producing an output power of 5.15 W at a pulse repetition rate of 2 kHz, with optical-to-optical and slope efficiencies being 35.8% and 52%, respectively. The generated laser pulses are 6.4 ns in duration (FWHM), with pulse energy and peak power amounting, respectively, to 2.58 mJ and 403 kW.

© 2013 Optical Society of America

PDF Article
OSA Recommended Articles
The potential of Yb:YCa4O(BO3)3 crystal in generating high-energy laser pulses

Junhai Liu, Qibiao Dai, Yong Wan, Wenjuan Han, and Xueping Tian
Opt. Express 21(8) 9365-9376 (2013)

Acousto-optic Q-switching laser performance of Yb:GdCa4O(BO3)3 crystal

Xiaowen Chen, Honghao Xu, Yunfeng Guo, Wenjuan Han, Haohai Yu, Huaijin Zhang, and Junhai Liu
Appl. Opt. 54(24) 7142-7147 (2015)

Repetitively Q-switched laser operation of a miniature Yb:LuPO4 crystal rod

Lisha Wang, Xiaodan Dou, Wenjuan Han, Honghao Xu, Degao Zhong, Bing Teng, and Junhai Liu
Opt. Mater. Express 7(3) 1048-1054 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chaps. 2, 8.
  2. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
    [Crossref]
  3. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
    [Crossref] [PubMed]
  4. W. Han, H. Yi, Q. Dai, K. Wu, H. Zhang, L. Xia, and J. Liu, “Passive Q-switching laser performance of Yb:Gd3Ga5O12 garnet crystal,” Appl. Opt. 52(18), 4329–4333 (2013).
    [Crossref] [PubMed]
  5. J. Liu, Q. Dai, Y. Wan, W. Han, and X. Tian, “The potential of Yb:YCa4O(BO3)3 crystal in generating high-energy laser pulses,” Opt. Express 21(8), 9365–9376 (2013).
    [Crossref] [PubMed]
  6. T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
    [Crossref]
  7. V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. B. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD9.
  8. M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA46.
  9. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett. 24(3), 154–156 (1999).
    [Crossref] [PubMed]
  10. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25(11), 805–807 (2000).
    [Crossref] [PubMed]
  11. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26(21), 1672–1674 (2001).
    [Crossref] [PubMed]
  12. I. Johannsen, S. Erhard, and A. Giesen, “Q-switched Yb:YAG thin disk laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD3.
  13. A. K. Hankla and T. J. Carrig, “Q-switched, injection-seeded, single-frequency Yb:YAG disk laser,” in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MD5.
  14. F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 237.
  15. P. Dekker, J. M. Dawes, and J. A. Piper, “2.27-W Q-switched self-doubling Yb:YAB laser with controllable pulse length,” J. Opt. Soc. Am. B 22(2), 378–384 (2005).
    [Crossref]
  16. A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
    [Crossref]
  17. O. Svelto, Principles of Lasers (Springer, 2010), Chaps. 7, 8.
  18. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
    [Crossref]
  19. A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
    [Crossref]
  20. G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron. 7(6), 220–224 (1971).
    [Crossref]

2013 (2)

2011 (1)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[Crossref]

2008 (1)

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

2007 (2)

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[Crossref] [PubMed]

2006 (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

2005 (1)

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

1971 (1)

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron. 7(6), 220–224 (1971).
[Crossref]

Avizonis, P. V.

Baldwin, G. D.

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron. 7(6), 220–224 (1971).
[Crossref]

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Beach, R. J.

Boulon, G.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Brenier, A.

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[Crossref]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Dai, Q.

Dawes, J. M.

Dekker, P.

Dong, J.

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Emanuel, M. A.

Fukuda, T.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Goodno, G. D.

Guyot, Y.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Han, W.

Harkenrider, J.

Harris, D. G.

Honea, E. C.

Hongyi, L.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

Huiming, T.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

Injeyan, H.

Jiying, P.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

Kagamitani, Y.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Kaminskii, A. A.

Kasamoto, T.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Liu, J.

Mitchell, S. C.

Monroe, R. S.

Novoselov, A.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Ohta, H.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Palese, S.

Payne, S. A.

Piper, J. A.

Shibata, H.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Shirakawa, A.

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Skidmore, J. A.

Sutton, S. B.

Tian, X.

Ueda, K.

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

Wan, Y.

Wu, K.

Xia, L.

Yi, H.

Yoshikawa, A.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Yubing, T.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

Zhang, H.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[Crossref]

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron. 7(6), 220–224 (1971).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys. 18(1), 12–14 (2008).
[Crossref]

Mater. Res. Bull. (1)

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull. 42(1), 27–32 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater. 22(2), 99–106 (2003).
[Crossref]

Other (7)

W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chaps. 2, 8.

O. Svelto, Principles of Lasers (Springer, 2010), Chaps. 7, 8.

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. B. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD9.

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA46.

I. Johannsen, S. Erhard, and A. Giesen, “Q-switched Yb:YAG thin disk laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD3.

A. K. Hankla and T. J. Carrig, “Q-switched, injection-seeded, single-frequency Yb:YAG disk laser,” in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MD5.

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 237.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics