Abstract

An efficient, acousto-optically Q-switched, and compact Yb:Gd3Ga5O12 laser oscillating around 1026 nm is demonstrated, producing an output power of 5.15 W at a pulse repetition rate of 2 kHz, with optical-to-optical and slope efficiencies being 35.8% and 52%, respectively. The generated laser pulses are 6.4 ns in duration (FWHM), with pulse energy and peak power amounting, respectively, to 2.58 mJ and 403 kW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chaps. 2, 8.
  2. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
    [CrossRef]
  3. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
    [CrossRef] [PubMed]
  4. W. Han, H. Yi, Q. Dai, K. Wu, H. Zhang, L. Xia, and J. Liu, “Passive Q-switching laser performance of Yb:Gd3Ga5O12 garnet crystal,” Appl. Opt.52(18), 4329–4333 (2013).
    [CrossRef] [PubMed]
  5. J. Liu, Q. Dai, Y. Wan, W. Han, and X. Tian, “The potential of Yb:YCa4O(BO3)3 crystal in generating high-energy laser pulses,” Opt. Express21(8), 9365–9376 (2013).
    [CrossRef] [PubMed]
  6. T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
    [CrossRef]
  7. V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. B. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD9.
    [CrossRef]
  8. M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA46.
  9. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett.24(3), 154–156 (1999).
    [CrossRef] [PubMed]
  10. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000).
    [CrossRef] [PubMed]
  11. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett.26(21), 1672–1674 (2001).
    [CrossRef] [PubMed]
  12. I. Johannsen, S. Erhard, and A. Giesen, “Q-switched Yb:YAG thin disk laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD3.
  13. A. K. Hankla and T. J. Carrig, “Q-switched, injection-seeded, single-frequency Yb:YAG disk laser,” in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MD5.
  14. F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 237.
  15. P. Dekker, J. M. Dawes, and J. A. Piper, “2.27-W Q-switched self-doubling Yb:YAB laser with controllable pulse length,” J. Opt. Soc. Am. B22(2), 378–384 (2005).
    [CrossRef]
  16. A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron.47(3), 279–284 (2011).
    [CrossRef]
  17. O. Svelto, Principles of Lasers (Springer, 2010), Chaps. 7, 8.
  18. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
    [CrossRef]
  19. A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
    [CrossRef]
  20. G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron.7(6), 220–224 (1971).
    [CrossRef]

2013 (2)

2011 (1)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron.47(3), 279–284 (2011).
[CrossRef]

2008 (1)

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

2007 (2)

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
[CrossRef]

2005 (1)

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

1971 (1)

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron.7(6), 220–224 (1971).
[CrossRef]

Avizonis, P. V.

Baldwin, G. D.

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron.7(6), 220–224 (1971).
[CrossRef]

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Beach, R. J.

Boulon, G.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Brenier, A.

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron.47(3), 279–284 (2011).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Dai, Q.

Dawes, J. M.

Dekker, P.

Dong, J.

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Emanuel, M. A.

Fukuda, T.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Goodno, G. D.

Guyot, Y.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Han, W.

Harkenrider, J.

Harris, D. G.

Honea, E. C.

Hongyi, L.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

Huiming, T.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

Injeyan, H.

Jiying, P.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

Kagamitani, Y.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Kaminskii, A. A.

Kasamoto, T.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Liu, J.

Mitchell, S. C.

Monroe, R. S.

Novoselov, A.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Ohta, H.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Palese, S.

Payne, S. A.

Piper, J. A.

Shibata, H.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Shirakawa, A.

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
[CrossRef]

Skidmore, J. A.

Sutton, S. B.

Tian, X.

Ueda, K.

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
[CrossRef]

Wan, Y.

Wu, K.

Xia, L.

Yi, H.

Yoshikawa, A.

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Yubing, T.

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

Zhang, H.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron.47(3), 279–284 (2011).
[CrossRef]

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron.7(6), 220–224 (1971).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008).
[CrossRef]

Mater. Res. Bull. (1)

A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Other (7)

W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chaps. 2, 8.

O. Svelto, Principles of Lasers (Springer, 2010), Chaps. 7, 8.

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. B. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD9.
[CrossRef]

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA46.

I. Johannsen, S. Erhard, and A. Giesen, “Q-switched Yb:YAG thin disk laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD3.

A. K. Hankla and T. J. Carrig, “Q-switched, injection-seeded, single-frequency Yb:YAG disk laser,” in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MD5.

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 237.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram for the actively Q-switched Yb:GGG laser. LC: laser crystal; AO: acousto-optic Q-switch.

Fig. 2
Fig. 2

Output characteristics of the Yb:GGG laser obtained under different operational conditions. The output coupling used was T = 60%. The inset shows a laser beam profile measured at an output power of 2.0 W.

Fig. 3
Fig. 3

Emission spectra measured for the Yb:GGG laser operating in cw or Q-switching mode.

Fig. 4
Fig. 4

Dependence of pulse width on Pabs measured for the actively Q-switched Yb:GGG laser operating at different PRFs.

Fig. 5
Fig. 5

An oscilloscope trace showing a typical pulse train (a) and a pulse profile (b), measured at Pabs = 11.2 W for the actively Q-switched Yb:GGG laser operating at PRF = 5 kHz.

Tables (1)

Tables Icon

Table 1 Calculated and Measured Parameters for the Actively Q-switched Yb:GGG Laser Operating at PRFs of 2−50 kHz, with an Absorbed Pump Power of Pabs = 14.4 W

Metrics