Abstract

To widen the linear dynamic range and improve the linearity, a closed-loop resonant fiber optic gyro (RFOG) is proposed and experimentally demonstrated. To overcome the effect of the imperfect serrodyne modulation, an improved frequency shifting module is designed and constructed on a LiNbO3 phase modulator. Its frequency resolution is improved to 0.01Hz which is equivalent to a rotation rate of 0.04°/h for an RFOG with a 12-cm diameter fiber ring resonator. With the frequency shifter applied in the RFOG, a closed-loop detection is demonstrated, whose bias stability is around 2 °/h, close to that of the open-loop output. Moreover, good linearity and wide dynamic range are also experimentally demonstrated thanks to the closed-loop operation. The measured result shows that the open-loop linear detection range of ± 215°/s is improved to ± 1076°/s. It is improved by a factor of 5. The open-loop scale factor nonlinearity of 1.2% is decreased to 0.02% (200ppm), which is improved by a factor of 60. These are the best results reported to date, to the best of our knowledge, for closed-loop RFOGs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” C. R. Acad. Sci.95, 708–710 (1913).
  2. H. Lefevre, The Fiber-Optic Gyro (Artech House, 1993).
  3. K. Hotate, “Optical fiber sensors, applications, analysis, and future trends,” in Fiber-Optic Gyros, J. Dakin and B. Culshaw, eds. (Artech House, 1997), pp. 167–206.
  4. C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
    [CrossRef]
  5. S. Ezekiel and R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977).
    [CrossRef]
  6. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol.29(1), 85–90 (2011).
    [CrossRef]
  7. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express19(5), 4632–4643 (2011).
    [CrossRef] [PubMed]
  8. L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE1795, 94–104 (1993).
    [CrossRef]
  9. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt.51(28), 6708–6717 (2012).
    [CrossRef] [PubMed]
  10. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express18(2), 1677–1683 (2010).
    [CrossRef] [PubMed]
  11. X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90 polarization-axis rotated splices,” J. Lightwave Technol.31(3), 366–374 (2013).
    [CrossRef]
  12. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett.37(16), 3342–3344 (2012).
    [CrossRef] [PubMed]
  13. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Opt. Express21(1), 358–369 (2013).
    [CrossRef] [PubMed]
  14. H. Ma, X. Lu, L. Yao, X. Yu, and Z. Jin, “Full investigation of the resonant frequency servo loop for resonator fiber-optic gyro,” Appl. Opt.51(21), 5178–5185 (2012).
    [CrossRef] [PubMed]
  15. K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation-method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” Proc. OFS-15, 104–107 (1999).
  16. X. Wang, M. Kishi, Z. He, and K. Hotate, “Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation,” Proc. SPIE8351, 83513G (2012).
    [CrossRef]
  17. L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE2292, 272–282 (1994).
    [CrossRef]
  18. Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt.51(15), 2856–2864 (2012).
    [CrossRef] [PubMed]
  19. A. Ebberg and G. Schiffner, “Closed-loop fiber-optic gyroscope with a sawtooth phase-modulated feedback,” Opt. Lett.10(6), 300–302 (1985).
    [CrossRef] [PubMed]
  20. D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun.281(4), 580–586 (2008).
    [CrossRef]
  21. X. L. Zhang, H. I. Ma, Z. H. Jin, and C. Ding, “Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,” Appl. Opt.45(31), 7961–7965 (2006).
    [CrossRef] [PubMed]

2013

2012

2011

2010

2008

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun.281(4), 580–586 (2008).
[CrossRef]

2006

2005

C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
[CrossRef]

1994

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE2292, 272–282 (1994).
[CrossRef]

1993

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE1795, 94–104 (1993).
[CrossRef]

1985

1977

S. Ezekiel and R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977).
[CrossRef]

1913

G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” C. R. Acad. Sci.95, 708–710 (1913).

Armenise, M. N.

C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
[CrossRef]

Balsamo, R.

S. Ezekiel and R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977).
[CrossRef]

Caterina, C.

C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
[CrossRef]

Chen, Z.

Ding, C.

Ebberg, A.

Ezekiel, S.

S. Ezekiel and R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977).
[CrossRef]

Francesco, P.

C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
[CrossRef]

Hayashi, G.

K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation-method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” Proc. OFS-15, 104–107 (1999).

He, Z.

Hotate, K.

Jin, Z.

Jin, Z. H.

Kishi, M.

X. Wang, M. Kishi, Z. He, and K. Hotate, “Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation,” Proc. SPIE8351, 83513G (2012).
[CrossRef]

Lu, X.

Ma, H.

Ma, H. I.

Mao, H.

Sagnac, G.

G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” C. R. Acad. Sci.95, 708–710 (1913).

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE2292, 272–282 (1994).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE1795, 94–104 (1993).
[CrossRef]

Schiffner, G.

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE2292, 272–282 (1994).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE1795, 94–104 (1993).
[CrossRef]

Wang, X.

Yang, Z.

Yao, L.

Ying, D.

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun.281(4), 580–586 (2008).
[CrossRef]

Yu, X.

Zhang, X. L.

Appl. Opt.

Appl. Phys. Lett.

S. Ezekiel and R. Balsamo, “Passive ring resonator laser gyroscope,” Appl. Phys. Lett.30(9), 478–480 (1977).
[CrossRef]

C. R. Acad. Sci.

G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” C. R. Acad. Sci.95, 708–710 (1913).

J. Lightwave Technol.

Opt. Commun.

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun.281(4), 580–586 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

X. Wang, M. Kishi, Z. He, and K. Hotate, “Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation,” Proc. SPIE8351, 83513G (2012).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE2292, 272–282 (1994).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Performance improvements of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE1795, 94–104 (1993).
[CrossRef]

C. Caterina, P. Francesco, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE5728, 93–100 (2005).
[CrossRef]

Other

K. Hotate and G. Hayashi, “Resonator fiber optic gyro using digital serrodyne modulation-method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing,” Proc. OFS-15, 104–107 (1999).

H. Lefevre, The Fiber-Optic Gyro (Artech House, 1993).

K. Hotate, “Optical fiber sensors, applications, analysis, and future trends,” in Fiber-Optic Gyros, J. Dakin and B. Culshaw, eds. (Artech House, 1997), pp. 167–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup of the closed-loop RFOG.

Fig. 2
Fig. 2

Analysis model of the closed-loop RFOG.

Fig. 3
Fig. 3

Frequency response of the servo controller.

Fig. 4
Fig. 4

Frequency response of the discriminator.

Fig. 5
Fig. 5

Improved equivalent frequency shifting module.

Fig. 6
Fig. 6

Schematic diagram of a Mach-Zehnder interferometer used for frequency shifting evaluation.

Fig. 7
Fig. 7

Measurement results of the sidebands suppression with different amplitudes of the serrodyne waveform. (a) ϕ0 = π. (b) ϕ0 = π + 0.1rad. (c) ϕ0 = π-0.1rad.

Fig. 8
Fig. 8

Relationship between the serrodyne shifted frequency and the FCW.

Fig. 9
Fig. 9

Measurements of optical spectrum using the MZI. (a) Spectral display at 1000.010 Hz with the FCW of 0. (b) Spectral display at 1000.0175 Hz with the FCW of 1. (c) Spectral display at 1000.030 Hz with the FCW of 2.

Fig. 10
Fig. 10

Output from LIA1 in the secondary closed loop.

Fig. 11
Fig. 11

Measurement results of the closed-loop RFOG.

Fig. 12
Fig. 12

Swing rotation response of the closed-loop RFOG.

Fig. 13
Fig. 13

Quasi-rotation measurement results of the open-loop RFOG.

Fig. 14
Fig. 14

Quasi-rotation measurement results of the closed-loop RFOG.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D 1 = k PD1 k LIA1 ,
G 1 (s)= k P1 (1+ 1 τ I1 s ) 1 1+ τ LPF1 s ,
H 1 (s)= D 1 G 1 (s) F 1 ,
T 1 (s)= 1 F 1 H 1 (s) 1+ H 1 (s) ,
E D1 (s)= D 1 1+ H 1 (s) ,
f s =g FCW τ ,
g= V ref 2 B × V π ,
F n = sin( ϕ 0 -nπ) ϕ 0 -nπ ,
S c =10lg | F 1 F 0 | 2 ,

Metrics