Abstract

We demonstrate a 490-attosecond timing jitter (integration bandwidth: 10 kHz – 39.4 MHz) optical pulse train from a 78.7-MHz repetition rate, all-fiber soliton Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (ft-CNT-SA). To achieve this jitter performance, we searched for a net cavity dispersion condition where the Gordon-Haus jitter is minimized while maintaining stable soliton mode-locking. Our result shows that optical pulse trains with well below a femtosecond timing jitter can be generated from a self-starting and robust all-fiber laser operating at telecom wavelength.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics5(4), 186–188 (2011).
    [CrossRef]
  2. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
    [CrossRef]
  3. K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J.5(3), 5500906 (2013).
    [CrossRef]
  4. G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10(-18) fractional accuracy,” Opt. Express20(2), 1775–1782 (2012).
    [CrossRef] [PubMed]
  5. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  6. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
    [CrossRef]
  7. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
    [CrossRef]
  8. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: Part I—Theory,” IEEE J. Quantum Electron.33(5), 649–659 (1997).
    [CrossRef]
  9. R. Paschotta, “Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations,” Appl. Phys. B79(2), 163–173 (2004).
    [CrossRef]
  10. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express18(5), 5041–5054 (2010).
    [CrossRef] [PubMed]
  11. Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett.36(10), 1761–1763 (2011).
    [CrossRef] [PubMed]
  12. T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett.36(22), 4443–4445 (2011).
    [CrossRef] [PubMed]
  13. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express19(15), 14518–14525 (2011).
    [CrossRef] [PubMed]
  14. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett.11(10), 665–667 (1986).
    [CrossRef] [PubMed]
  15. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  16. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett.29(14), 1581–1583 (2004).
    [CrossRef] [PubMed]
  17. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  18. C. Kim, K. Jung, K. Kieu, and J. Kim, “Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber,” Opt. Express20(28), 29524–29530 (2012).
    [CrossRef] [PubMed]
  19. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
    [CrossRef] [PubMed]
  20. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett.32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  21. C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
    [CrossRef]

2013 (1)

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J.5(3), 5500906 (2013).
[CrossRef]

2012 (2)

2011 (4)

2010 (2)

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

2008 (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
[CrossRef]

2007 (2)

2004 (2)

2003 (1)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

1997 (2)

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: Part I—Theory,” IEEE J. Quantum Electron.33(5), 649–659 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
[CrossRef]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

1995 (1)

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

1986 (1)

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
[CrossRef]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
[CrossRef]

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Gordon, J. P.

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Haus, H. A.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: Part I—Theory,” IEEE J. Quantum Electron.33(5), 649–659 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett.11(10), 665–667 (1986).
[CrossRef] [PubMed]

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Inoue, Y.

Jablonski, M.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Jung, K.

Kärtner, F. X.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
[CrossRef] [PubMed]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
[CrossRef] [PubMed]

Kieu, K.

Kim, C.

Kim, H.

Kim, J.

Kim, T. K.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Mansuripur, M.

Margolis, H. S.

Marra, G.

Maruyama, S.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

Miller, D. A. B.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Murakami, Y.

Nam, C. H.

Namiki, S.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: Part I—Theory,” IEEE J. Quantum Electron.33(5), 649–659 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics5(4), 186–188 (2011).
[CrossRef]

Paschotta, R.

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express18(5), 5041–5054 (2010).
[CrossRef] [PubMed]

R. Paschotta, “Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations,” Appl. Phys. B79(2), 163–173 (2004).
[CrossRef]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Richardson, D. J.

Set, S. Y.

Shin, J.

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J.5(3), 5500906 (2013).
[CrossRef]

Song, Y.

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Valley, G. C.

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Yaguchi, H.

Yamashita, S.

Yu, C. X.

C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
[CrossRef]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations,” Appl. Phys. B79(2), 163–173 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993).
[CrossRef]

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser: Part I—Theory,” IEEE J. Quantum Electron.33(5), 649–659 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser: Part II - Experiments,” IEEE J. Quantum Electron.33(5), 660–668 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron.9(2), 477–485 (2003).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

IEEE Photonics J. (1)

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photonics J.5(3), 5500906 (2013).
[CrossRef]

Nat. Photonics (2)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics5(4), 186–188 (2011).
[CrossRef]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The structure of all-fiber Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (CNT-SA). (b) Measured broadest optical spectra at different intra-cavity dispersion condition.

Fig. 2
Fig. 2

(a) Measured relative intensity noise (RIN) spectra for different intra-cavity dispersion conditions. (b) Integrated RIN (rms) with different integration bandwidth and intra-cavity dispersion condition.

Fig. 3
Fig. 3

Long-term output power and optical bandwidth measurement results of the constructed CNT-SA-based all-fiber Er laser over 10 days.

Fig. 4
Fig. 4

Predicted integrated rms timing jitter as a function of intra-cavity dispersion (integration bandwidth: 10 kHz – 25 MHz offset frequency) based on the measured and known laser parameters. (a) Quantum-limited timing jitter directly originated from the ASE noise (direct jitter). (b) Quantum-limited timing jitter indirectly originated from center frequency fluctuation via intra-cavity dispersion (Gordon-Haus jitter). (c) RIN-originated timing jitter, including the Kramers-Kronig relationship and the coupling via a slow saturable absorber (RIN-originated jitter). (d) Total timing jitter, including all effects of direct jitter, Gordon-Haus jitter, and RIN-originated jitter. The result shows that Gordon-Haus jitter contribution is the dominant effect to the total jitter.

Fig. 5
Fig. 5

Experimental set-up for timing jitter characterization of the laser under test (CNT-mode-locked all-fiber Er laser). BPF, bandpass filter; EDFA, Er-doped fiber amplifier; HWP, half-wave plate; PBS, polarization beam splitter; PD, photodetector.

Fig. 6
Fig. 6

Timing jitter spectral density measurement results of CNT-mode-locked soliton Er-fiber laser (LUT). (a) Timing jitter spectral density of LUT at −0.02 ps2 and −0.03 ps2 net cavity dispersion. For comparison, jitter data at −0.055 ps2 (from [18]) is included. (b) Timing jitter spectral density of LUT at different optical bandwidth and intra-cavity pulse energy at −0.02 ps2 net cavity dispersion.

Fig. 7
Fig. 7

Predicted integrated timing jitter (black circles) versus measured integrated timing jitter (blue stars). The plot of “predicted timing jitter @ maximum bandwidth” used the conditions shown in Table 1. The plot of “predicted timing jitter @ minimum bandwidth” is based on the 8-nm bandwidth condition. The measured timing jitter (blue stars) of (a) 14 nm bandwidth and 0.21 nJ pulse energy at −0.03 ps2, (b) 13.8 nm bandwidth and 0.15 nJ pulse energy at −0.02 ps2, (c) 8 nm bandwidth and 0.09 nJ pulse energy at −0.03 ps2, and (d) 8 nm bandwidth and 0.07 nJ pulse energy at −0.02 ps2.

Tables (1)

Tables Icon

Table 1 Summary of laser parameters

Metrics