Abstract

We propose a liquid crystal (LC) micro-lens array with the structure of two-divided and tetragonally hole-patterned electrodes. Each LC cell in the lens array behaves like cylindrical or spherical lens properties by electrically adjusting the applied voltages. The LC micro-lens array is useful for tuning optical properties such a focal length and deflection angle of a light emitting diode (LED) illumination system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
    [CrossRef]
  2. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett.23(13), 992–994 (1998).
    [CrossRef] [PubMed]
  3. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
    [CrossRef]
  4. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002).
    [CrossRef]
  5. H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).
  6. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003).
    [CrossRef]
  7. M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
    [CrossRef]
  8. M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
    [CrossRef]
  9. M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
    [CrossRef]
  10. M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
    [CrossRef]
  11. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989).
    [CrossRef]
  12. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
    [CrossRef]
  13. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997).
    [CrossRef] [PubMed]
  14. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
    [CrossRef]
  15. M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
    [CrossRef]
  16. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
    [CrossRef]
  17. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
    [CrossRef]
  18. M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001).
    [CrossRef]
  19. T. Sugita, S. Oka, T. Naganuma, T. Saito, S. Komura, and T. Miyazawa, “Refractive index distribution analysis of liquid crystal GRIN lens for autostereoscopic 2D/3D switchable displays,” SID Symp. Dig. Tech. 43 1452–1455 (2012).
    [CrossRef]

2013 (1)

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

2010 (2)

H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

2008 (1)

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

2006 (1)

M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
[CrossRef]

2005 (2)

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
[CrossRef]

2004 (1)

M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
[CrossRef]

2003 (1)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003).
[CrossRef]

2002 (3)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
[CrossRef]

2001 (1)

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989).
[CrossRef]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

Fujioka, S.

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

Guralnik, I. R.

Hayasaka, H.

M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
[CrossRef]

Honma, M.

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Ito, H.

Kawamura, M.

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
[CrossRef]

Kunitsuka, H.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Lin, H.

H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Lin, Y.-H.

H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

Loktev, M. Y.

Masuda, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

Naumov, A. F.

Nose, T.

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989).
[CrossRef]

Onishi, J.

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

Ouchi, K.

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
[CrossRef]

Ren, H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002).
[CrossRef]

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
[CrossRef]

M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
[CrossRef]

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997).
[CrossRef] [PubMed]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

Umeda, H.

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

Vdovin, G.

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
[CrossRef]

Wu, S. T.

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002).
[CrossRef]

Wu, S.-T.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
[CrossRef]

M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
[CrossRef]

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002).
[CrossRef]

H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).

Jpn. J. Appl. Phys. (9)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006).
[CrossRef]

M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013).
[CrossRef]

M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002).
[CrossRef]

M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004).
[CrossRef]

S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008).
[CrossRef]

Opt. Commun. (2)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003).
[CrossRef]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005).
[CrossRef]

Opt. Lett. (1)

Other (1)

T. Sugita, S. Oka, T. Naganuma, T. Saito, S. Komura, and T. Miyazawa, “Refractive index distribution analysis of liquid crystal GRIN lens for autostereoscopic 2D/3D switchable displays,” SID Symp. Dig. Tech. 43 1452–1455 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The cross-section of the LC-micro-lens array. (a) Top view; (b) Side view

Fig. 2
Fig. 2

Interference fringe patterns under various voltages applied to the LC micro-lens (VL = VR) in a crossed polarizing microscope system. (a) VL = VR = 0; (b) VL = VR = 2.0 V; (c) VL = VR = 2.5 V; (d) VL = VR = 3.0 V.

Fig. 3
Fig. 3

Interference fringe patterns of the LC micro-lens under different voltages. (a) VL = 2.0V, VR = 4.0V; (b) VL = 4.0V, VR = 2.0V.

Fig. 4
Fig. 4

Phase retardation distributions from the fringe patterns as shown in Fig. 3. (a) VR = 4.0 V; (b) VL = 4.0 V.

Fig. 5
Fig. 5

Interference fringe patterns of the LC micro-lens under different voltages. (a) VL = 2.0V, VR = 0; (b) VL = 3.0V, VR = 0; (c) VL = 0, VR = 2.0V; (d) VL = 0, VR = 3.0V.

Fig. 6
Fig. 6

Phase retardation distributions from the fringe patterns as shown in Fig. 5. (a) VR = 0 V; (b) VL = 0 V.

Metrics