Abstract

We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol.30(4), 597–608 (2012).
    [CrossRef]
  2. R. P. Davey, D. B. Grossman, M. R. Wiech, D. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S. H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol.27(3), 273–291 (2009).
    [CrossRef]
  3. P. Ossieur, C. Antony, A. Naughton, S. Porto, N. A. Quadir, A. M. Clarke, and P. D. Townsend, “Hybrid DWDM-TDMA PONs for next generation access,” in Proc. OFC’12, paper. OW1B.7 (2012).
    [CrossRef]
  4. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol.30(4), 384–398 (2012).
    [CrossRef]
  5. J. Tang, R. Giddings, and X. Jin, “Real-time optical OFDM transceivers for PON applications,” in Proc. OFC’11, paper. OTuK3 (2011).
    [CrossRef]
  6. C. H. Yeh, C. W. Chow, H. Y. Chen, and Y. F. Wu, “10-Gbps OFDM upstream rate by using RSOA-ONU with seeding-light for 75 km long-reach PON access,” in Proc. OFC’12, paper. JTh2A.65 (2012).
    [CrossRef]
  7. A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
    [CrossRef]
  8. D. Y. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
    [CrossRef]
  9. J. Tang, “First experimental demonstration of real-time optical OFDMA PONs with colorless ONUs and adaptive DBA,” in Proc. OFC’12, paper. OW4B.5 (2012).
    [CrossRef]
  10. D. Y. Qian, S. H. Fan, N. Cvijetic, J. Q. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Proc. OFC’11, paper. OMG4 (2011).
    [CrossRef]
  11. J. H. Yan, Y. W. Chen, K. H. Shen, and K. M. Feng, “A 1:128 high splitting ratio long reach PON based on a simple receiving design for ONU with 120-Gb/s double-sided multiband DDO-OFDM Signal,” in Proc. OFC’13, paper. JW2A.74 (2013).
    [CrossRef]
  12. Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
    [CrossRef]
  13. W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (>100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol.30(12), 2025–2034 (2012).
    [CrossRef]
  14. W. R. Peng, H. Takahashi, I. Morita, and H. Tanaka, “Transmission of a 213.7-Gb/s single-polarization direct-detection optical OFDM superchannel over 720-km standard single mode fiber with EDFA-only amplification,” in Proc. ECOC’10, paper., PDP2.5 (2010).
    [CrossRef]
  15. C. Xi, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” in Proc. OFC’13, paper. PDP5B.7 (2013).
  16. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and K. Yamada, “Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver,” Opt. Express20(8), 9312–9321 (2012).
    [CrossRef] [PubMed]
  17. B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “140-krad/s, 254-gigaradian endless optical polarization tracking, independent of analyzed output polarization,” in Proc. OFC’12, paper. OTu1G.6 (2012).
    [CrossRef]
  18. ITU-T Recommendation G.975.1, Appendix I.9 (2004).

2013

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

2012

2010

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

D. Y. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
[CrossRef]

2009

Al Amin, A.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

Appathurai, S.

Cvijetic, N.

Davey, R. P.

Grossman, D. B.

Gui, T.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

He, Z. X.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Hu, J.

Hu, R.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Ishikawa, Y.

Kelly, A. E.

Kimura, H.

Kou, R.

Li, C.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Li, Z. H.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Luo, M.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Morita, I.

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (>100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol.30(12), 2025–2034 (2012).
[CrossRef]

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

Nesset, D.

Nishi, H.

Payne, D.

Peng, W. R.

Qian, D. Y.

Rafel, A.

Shinojima, H.

Takahashi, H.

W. R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (>100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol.30(12), 2025–2034 (2012).
[CrossRef]

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

Tanaka, H.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

Tsuchizawa, T.

Tsuritani, T.

Wada, K.

Wang, T.

Wiech, M. R.

Wong, E.

Xiao, X.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Xue, D. J.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Yamada, K.

Yamada, T.

Yang, Q.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Yang, S. H.

You, S. H.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Yu, S. H.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

Zhang, X.

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Al Amin, H. Takahashi, I. Morita, and H. Tanaka, “100-Gbps direct-detection OFDM transmission on independent polarization tributaries,” IEEE Photon. Technol. Lett.22(7), 468–470 (2010).
[CrossRef]

Z. H. Li, X. Xiao, T. Gui, Q. Yang, R. Hu, Z. X. He, M. Luo, C. Li, X. Zhang, D. J. Xue, S. H. You, and S. H. Yu, “432-Gb/s direct-detection optical OFDM superchannel transmission over 3,040 km SSMF,” IEEE Photon. Technol. Lett.25(15), 1524–1526 (2013).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

P. Ossieur, C. Antony, A. Naughton, S. Porto, N. A. Quadir, A. M. Clarke, and P. D. Townsend, “Hybrid DWDM-TDMA PONs for next generation access,” in Proc. OFC’12, paper. OW1B.7 (2012).
[CrossRef]

J. Tang, R. Giddings, and X. Jin, “Real-time optical OFDM transceivers for PON applications,” in Proc. OFC’11, paper. OTuK3 (2011).
[CrossRef]

C. H. Yeh, C. W. Chow, H. Y. Chen, and Y. F. Wu, “10-Gbps OFDM upstream rate by using RSOA-ONU with seeding-light for 75 km long-reach PON access,” in Proc. OFC’12, paper. JTh2A.65 (2012).
[CrossRef]

W. R. Peng, H. Takahashi, I. Morita, and H. Tanaka, “Transmission of a 213.7-Gb/s single-polarization direct-detection optical OFDM superchannel over 720-km standard single mode fiber with EDFA-only amplification,” in Proc. ECOC’10, paper., PDP2.5 (2010).
[CrossRef]

C. Xi, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” in Proc. OFC’13, paper. PDP5B.7 (2013).

B. Koch, R. Noé, V. Mirvoda, and D. Sandel, “140-krad/s, 254-gigaradian endless optical polarization tracking, independent of analyzed output polarization,” in Proc. OFC’12, paper. OTu1G.6 (2012).
[CrossRef]

ITU-T Recommendation G.975.1, Appendix I.9 (2004).

J. Tang, “First experimental demonstration of real-time optical OFDMA PONs with colorless ONUs and adaptive DBA,” in Proc. OFC’12, paper. OW4B.5 (2012).
[CrossRef]

D. Y. Qian, S. H. Fan, N. Cvijetic, J. Q. Hu, and T. Wang, “64/32/16QAM-OFDM using direct-detection for 40G-OFDMA-PON downstream,” in Proc. OFC’11, paper. OMG4 (2011).
[CrossRef]

J. H. Yan, Y. W. Chen, K. H. Shen, and K. M. Feng, “A 1:128 high splitting ratio long reach PON based on a simple receiving design for ONU with 120-Gb/s double-sided multiband DDO-OFDM Signal,” in Proc. OFC’13, paper. JW2A.74 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System architecture of the proposed DDO-OFDM LR-PON downstream scheme. (a) Optical spectrum of the generated DDO-OFDM superchannel; (b) coupling scheme for the filtered pilot-carriers and sub-bands; (c) the coupled signal transmitted to ONUs. BPF: Band Pass Filter.

Fig. 2
Fig. 2

Experimental setup of the proposed 116.7-Gb/s DDO-OFDM superchannel transmission for LR-PON. VOA: Variable Optical Attenuator; WSS: Wavelength Selective Switch; TOF: Tunable Optical Filters; PM: Phase Modulator; IQM: IQ Modulator; ECL: External Cavity Laser.

Fig. 3
Fig. 3

The impact of CSPR on system performance for back-to-back and 80 km transmission.

Fig. 4
Fig. 4

The optimum launch power measured at three CSPR of 2 dB, 7 dB, and 12 dB.

Fig. 5
Fig. 5

The measured receiver sensitivity by tuning the VOA.

Fig. 6
Fig. 6

The measured performance of each sub-band when CSPR is 7 dB and launch power is 12.5 dBm.

Metrics