Abstract

The degeneration of Fraunhofer diffraction conditions in the optical system with converging spherical wave illumination for bacteria species identification based on diffraction patterns is analyzed by digital holographic methods. The obtained results have shown that the colonies of analyzed bacteria species act as biological lenses with the time-dependent light focusing properties, which are characterized and monitored by means of phase retrieval from sequentially captured digital holograms. This significantly affects the location of Fraunhofer patterns observation plane, which is continuously shifted across optical axis in time.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. B. Amyes, “The rise in bacterial resistance,” BMJ320(7229), 199–200 (2000).
    [CrossRef] [PubMed]
  2. S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004).
    [CrossRef] [PubMed]
  3. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
    [CrossRef]
  4. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
    [CrossRef] [PubMed]
  5. A. Maninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamӓki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross-sections from airborne microsized particle,” Appl. Opt.47(7), 110–115 (2008).
  6. A. Alimova, A. Katz, P. Gottlieb, and R. R. Alfano, “Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy,” Appl. Opt.45(3), 445–450 (2006).
    [CrossRef] [PubMed]
  7. J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).
  8. R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005).
    [PubMed]
  9. D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt.45(13), 3152–3157 (2006).
    [CrossRef] [PubMed]
  10. S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
    [CrossRef] [PubMed]
  11. J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
    [CrossRef] [PubMed]
  12. J. C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: Observations and calculations,” Opt. Lett.32(22), 3358–3360 (2007).
    [CrossRef] [PubMed]
  13. P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).
  14. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008).
    [CrossRef] [PubMed]
  15. P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
    [CrossRef] [PubMed]
  16. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
    [CrossRef] [PubMed]
  17. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
    [CrossRef] [PubMed]
  18. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
    [CrossRef] [PubMed]
  19. E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
    [CrossRef] [PubMed]
  20. I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
    [CrossRef]
  21. I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010).
    [CrossRef] [PubMed]
  22. I. Buzalewicz, K. Wysocka–Król, K. Kowal, and H. Podbielska, “Evaluation of antibacterial agents efficiency” in Information Technologies in Biomedicine 2, E. Pietka, J. Kawa ed. (Springer-Verlag, Berlin, 2010).
  23. I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express19(22), 21768–21785 (2011).
    [CrossRef] [PubMed]
  24. A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
    [CrossRef]
  25. H. Podbielska, I. Buzalewicz, and A. Suchwalko, “Bacteria Classification by Means of the Statistical Analysis of Fresnel Diffraction Patterns of Bacteria Colonies,” Biomedical Optics (BIOMED) (2012).
  26. A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).
  27. A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013).
    [CrossRef] [PubMed]
  28. J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
    [CrossRef]
  29. T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
    [CrossRef]
  30. K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013).
    [CrossRef] [PubMed]
  31. K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).
  32. T. Kozacki, M. Józwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett.36(22), 4419–4421 (2011).
    [CrossRef] [PubMed]
  33. T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).
  34. J. W. Goodman, Introduction to Fourier Optics, Third edition, (Robert & Company Publishers, 2005).
  35. J. D. Gaskill, Linear systems, Fourier transform and optics, (John Wiley & Sons, New York, 1978).
  36. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  37. A. B. Forbes, A.B. 1989, “Least-Squares Best-Fit Geometric Elements,” National Physical Laboratory Report DITC 140/89 (1989).

2013

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).

A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013).
[CrossRef] [PubMed]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013).
[CrossRef] [PubMed]

2012

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
[CrossRef]

2011

2010

I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010).
[CrossRef] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

2009

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
[CrossRef]

T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).

2008

2007

2006

2005

R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005).
[PubMed]

2004

J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).

S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004).
[CrossRef] [PubMed]

2002

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

2001

2000

S. G. B. Amyes, “The rise in bacterial resistance,” BMJ320(7229), 199–200 (2000).
[CrossRef] [PubMed]

1999

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

1997

Abdel-Hamid, I.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Adil, A.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

Alfano, R. R.

Alimova, A.

Amyes, S. G. B.

S. G. B. Amyes, “The rise in bacterial resistance,” BMJ320(7229), 199–200 (2000).
[CrossRef] [PubMed]

Aptowicz, K. B.

Aroonnual, A.

E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
[CrossRef] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

Atanasov, P.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Auger, J. C.

Bae, E.

E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
[CrossRef] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

Bae, P. E.

Bai, N.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

Banada, P. P.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).

Bayraktar, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

Bhunia, A. K.

E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
[CrossRef] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).

Bottiger, J.

Bronk, B. V.

Buzalewicz, I.

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).

A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013).
[CrossRef] [PubMed]

A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
[CrossRef]

I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express19(22), 21768–21785 (2011).
[CrossRef] [PubMed]

I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010).
[CrossRef] [PubMed]

I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
[CrossRef]

Chang, R. K.

Chen, S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Dostálek, J.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Fell, N. F.

Gottlieb, P.

Guo, S.

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

Hernberg, R.

Hill, S. C.

Hilliard, L. R.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Hirleman, E. D.

E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
[CrossRef] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).

Holler, S.

Homola, J.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Huff, K.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).

Ivnitski, D.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Jiang, S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Józwicki, R.

T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).

Józwik, M.

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

T. Kozacki, M. Józwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett.36(22), 4419–4421 (2011).
[CrossRef] [PubMed]

T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).

Katz, A.

Keskinen, J.

Kostencka, J.

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013).
[CrossRef] [PubMed]

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

Kozacki, T.

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013).
[CrossRef] [PubMed]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
[CrossRef]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

T. Kozacki, M. Józwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett.36(22), 4419–4421 (2011).
[CrossRef] [PubMed]

T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).

Lary, T.

Laurila, T.

Levy, S. B.

S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004).
[CrossRef] [PubMed]

Lizewski, K.

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on superresolution concept,” Opt. Lett.38(11), 1878–1880 (2013).
[CrossRef] [PubMed]

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

T. Kozacki, M. Józwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett.36(22), 4419–4421 (2011).
[CrossRef] [PubMed]

Maninen, A.

Marjam?ki, M.

Marshall, B.

S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004).
[CrossRef] [PubMed]

Mechery, S. J.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Munteanu, A.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Niles, S.

Noble, R. T.

R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005).
[PubMed]

Pan, Y. L.

Pan, Y.-L.

Pinnick, R. G.

Podbielska, H.

A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013).
[CrossRef] [PubMed]

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).

A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
[CrossRef]

I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination,” Opt. Express19(22), 21768–21785 (2011).
[CrossRef] [PubMed]

I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010).
[CrossRef] [PubMed]

I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
[CrossRef]

Putkiranta, M.

Ragheb, K.

Rajwa, B.

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

Rasooly, A.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Robinson, J. P.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008).
[CrossRef] [PubMed]

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

P. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007).

Rosen, D. L.

Rostedt, A.

Saarela, J.

Suchwalko, A.

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).

A. Suchwałko, I. Buzalewicz, A. Wieliczko, and H. Podbielska, “Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns,” Opt. Express21(9), 11322–11337 (2013).
[CrossRef] [PubMed]

A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
[CrossRef]

Tan, W.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Thomason, J.

J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).

Venkatapathi, M.

Wang, L.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Weisberg, S. B.

R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005).
[PubMed]

Wieliczko, A.

Wilkins, E.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Wysocka, K.

I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
[CrossRef]

Wysocka-Król, K.

Yamaguchi, I.

Yee, S. S.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

Zhang, T.

Zhao, X. J.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Biosens. Bioelectron.

P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007).
[CrossRef] [PubMed]

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009).
[CrossRef] [PubMed]

BMJ

S. G. B. Amyes, “The rise in bacterial resistance,” BMJ320(7229), 199–200 (2000).
[CrossRef] [PubMed]

Chem. Asian J.

S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006).
[CrossRef] [PubMed]

Int. J. Food Microbiol.

J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002).
[CrossRef] [PubMed]

J Biophotonics

E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J Biophotonics4(4), 236–243 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010).
[CrossRef] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008).
[CrossRef] [PubMed]

J. Water Health

R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005).
[PubMed]

Nat. Med.

S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004).
[CrossRef] [PubMed]

Opt. Commun.

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” -,” Opt. Commun.297, 20–26 (2013).
[CrossRef]

Opt. Express

Opt. Laser Technol.

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol.49, 38–46 (2013).
[CrossRef]

Opt. Lett.

Opto-Electron. Rev.

T. Kozacki, M. Józwik, and R. Jóźwicki, ““Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev.17, 58–63 (2009).

Photon. Spectra

J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).

Proc. SPIE

K. Liżewski, T. Kozacki, M. Józwik, and J. Kostencka, “On topography characterization of micro-optical elements with large numerical aperture using digital holographic microscopy,” Proc. SPIE8430, 8430 (2012).

A. Suchwalko, I. Buzalewicz, and H. Podbielska, “Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns,” Proc. SPIE82120R, 82120R-13 (2012).
[CrossRef]

I. Buzalewicz, K. Wysocka, and H. Podbielska, “„Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009).
[CrossRef]

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Identification of bacteria species by using morphological and textural properties of bacterial colonies diffraction patterns,” Proc. SPIE8791, 8791 (2013).

Other

A. B. Forbes, A.B. 1989, “Least-Squares Best-Fit Geometric Elements,” National Physical Laboratory Report DITC 140/89 (1989).

H. Podbielska, I. Buzalewicz, and A. Suchwalko, “Bacteria Classification by Means of the Statistical Analysis of Fresnel Diffraction Patterns of Bacteria Colonies,” Biomedical Optics (BIOMED) (2012).

I. Buzalewicz, K. Wysocka–Król, K. Kowal, and H. Podbielska, “Evaluation of antibacterial agents efficiency” in Information Technologies in Biomedicine 2, E. Pietka, J. Kawa ed. (Springer-Verlag, Berlin, 2010).

J. W. Goodman, Introduction to Fourier Optics, Third edition, (Robert & Company Publishers, 2005).

J. D. Gaskill, Linear systems, Fourier transform and optics, (John Wiley & Sons, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The proposed optical system configuration for characterization of bacteria colonies diffraction patterns: L0 transforming lens in (x0,y0) plane, bacteria colonies on Petri dish in (x1,y1) plane, observation plane (x2,y2) [23].

Fig. 2
Fig. 2

Exemplary Fresnel diffraction patterns of Escherichia coli colony recorded in different location of the observation plane: (a) 2cm, (b) 3cm, (c) 4 cm (bacteria colony diameter: approx. 0.9 mm, beam diameter: approx. 1 mm).

Fig. 3
Fig. 3

Experimental DHM setup based on Mach-Zehnder interferometer: (a) full system, (b) the configuration of an object arm. P1,P2- polarizer’s; HWPP1,HWPP2 - half wave plates; M1,M2,M3 - mirrors; C - colimator; BS1,BS2 - beam splitter cubes; MO - microscope objective; IL - imaging lens; PZT - piezotransducer, MS- translation stage.

Fig. 4
Fig. 4

Exemplary profile of Escherichia coli colony obtained by the confocal laser scanning microscope.

Fig. 5
Fig. 5

The exemplary fringe pattern of Escherichia coli colony limited by rectangular aperture (a), phase modulo 2π (b) and topography reconstruction (c) obtained by LRA algorithm.

Fig. 6
Fig. 6

The cross-sectional representations of intensity of integrated optical field transformed by bacterial colony in consecutive planes (zrange = 500-800µm) as obtained for six measurements separated by 30 min. time slot.

Fig. 7
Fig. 7

The exemplary fitting of Escherichia coli colony profile by 10-th order polynomial performed for the colony measured in t = 0 min.

Fig. 8
Fig. 8

The exemplary comparison of the experimentally reconstructed Escherichia coli colony profile and approximated ideal spherical surface (a) and the quantitative analysis of the deviation between them (b) performed for the colony measured in t = 0 min.

Fig. 9
Fig. 9

Profiles of colony shape for t = 0 min. used for determination of the influence of bacterial colony profile variations on the simulated location of the focal point.

Fig. 10
Fig. 10

Location of the focal point in function of ROC (a) and refractive index n (b).

Tables (1)

Tables Icon

Table 1 Changes of Bacterial Colony Properties in Time

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ( x 1 , y 1 ,t )=kn h MAX (t)k( n 1) x 1 2 + y 1 2 2 ( 1 r 1 r b (t) )=kn h MAX (t)k x 1 2 + y 1 2 2 F b (t),
t b ( x ,y,t )= t b 0 ( x,y,t )exp{ iϕ( x,y,t ) }= t b 0 ( x,y,t )exp{ kn h MAX (t) }exp{ k x 2 + y 2 2 F b (t) },
h LRA (x')=φ(x) (n k 0 k 0 2 k z n 1 ) 1 ,
x s =φ(x)φ(x) k 0 1 (n k z n k 0 ) 1 ,
r i = ( x x 0 ) 2 + ( y y 0 ) 2 + ( z z 0 ) 2 ,
U 2 (ξ,η)= 1 { { U 1 (x,y) }{ h LRA ( x,y ) } },
h (x,y)= 1 2π exp( ikr ) r z r ( 1 r i 2π λ ),

Metrics