Abstract

The modified fluorescence properties of a molecule in the vicinity of a metallic nanoparticle are further studied accounting for the possible existence of extraneous charges on the particle surface. This is achieved via a generalization of the previous theory of Bohren and Hunt for light scattering from a charged sphere, with the results applied to the calculation of the various decay rates and fluorescence yield of the admolecule. Numerical results show that while charge effects will in general blue-shift all the plasmonic resonances of the metal particle, both the quantum yield and the fluorescence yield can be increased at emission frequencies close to that of the surface plasmon resonance of the particle due to the suppression of the nonradiative decay rate. This provides a possibility of further enhancing the particle-induced molecular fluorescence via the addition of surface charge to the metal particle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
    [CrossRef] [PubMed]
  2. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  3. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
    [CrossRef] [PubMed]
  4. G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
    [CrossRef] [PubMed]
  5. C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
    [CrossRef] [PubMed]
  6. See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
    [CrossRef]
  7. C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55(21), 1930–1935 (1977).
    [CrossRef]
  8. J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 170–183 (2007).
    [CrossRef]
  9. E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35(8), 1178–1180 (2010).
    [CrossRef] [PubMed]
  10. M. Kocifaj and J. Klačka, “Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution,” Opt. Lett.37(2), 265–267 (2012).
    [CrossRef] [PubMed]
  11. R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
    [CrossRef] [PubMed]
  12. A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
    [CrossRef]
  13. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
    [CrossRef] [PubMed]
  14. J. Rostalski and M. Quinten, “Effect of a surface charge on the halfwidth and peak position of cluster plasmons in colloidal metal particles,” Colloid Polym. Sci.274(7), 648–653 (1996).
    [CrossRef]
  15. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
    [CrossRef]
  16. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett.8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  17. P. G. Etchegoin and E. C. Le Ru, Surface Enhanced Raman Spectrocopy: Analytical, Biophysical and Life Science Applications (edited by S. Schlucker), pp 1–37 (Wiley-VCH, 2011).
  18. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76 (4), 1681–1684 (1982). Note that the first work that studied the scattering of dipole radiation from a sphere was in B. van der Pol and H. Bremmer, ” The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Part I,” Philos. Mag.24(159), 141–176 (1937) (however, Ruppin was the first to apply this theory to study the problem of molecular fluorescence near a sphere.).
  19. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  20. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
    [CrossRef]
  21. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
    [CrossRef] [PubMed]
  22. H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
    [CrossRef]
  23. G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett.37(9), 1583–1585 (2012).
    [CrossRef] [PubMed]

2013 (1)

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
[CrossRef] [PubMed]

2012 (8)

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
[CrossRef]

For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
[CrossRef] [PubMed]

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
[CrossRef]

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
[CrossRef] [PubMed]

M. Kocifaj and J. Klačka, “Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution,” Opt. Lett.37(2), 265–267 (2012).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett.37(9), 1583–1585 (2012).
[CrossRef] [PubMed]

2011 (1)

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35(8), 1178–1180 (2010).
[CrossRef] [PubMed]

2007 (3)

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 170–183 (2007).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

1996 (1)

J. Rostalski and M. Quinten, “Effect of a surface charge on the halfwidth and peak position of cluster plasmons in colloidal metal particles,” Colloid Polym. Sci.274(7), 648–653 (1996).
[CrossRef]

1988 (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
[CrossRef]

1983 (1)

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

1977 (1)

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55(21), 1930–1935 (1977).
[CrossRef]

1937 (1)

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76 (4), 1681–1684 (1982). Note that the first work that studied the scattering of dipole radiation from a sphere was in B. van der Pol and H. Bremmer, ” The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Part I,” Philos. Mag.24(159), 141–176 (1937) (however, Ruppin was the first to apply this theory to study the problem of molecular fluorescence near a sphere.).

Acuna, G. P.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Arnon, S.

Arntsen, C.

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

Bartell, L.

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55(21), 1930–1935 (1977).
[CrossRef]

Bronold, F. X.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
[CrossRef] [PubMed]

Bucher, M.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Chen, H.

For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
[CrossRef] [PubMed]

Chien, H. T.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

Chung, H. Y.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
[CrossRef] [PubMed]

See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
[CrossRef]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
[CrossRef]

Fehske, H.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
[CrossRef] [PubMed]

George, T. F.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Gopalsami, N.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Heifetz, A.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

Heinisch, R. L.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
[CrossRef] [PubMed]

Holzmeister, P.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Hunt, A. J.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55(21), 1930–1935 (1977).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Khurgin, J. B.

Kim, Y. S.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
[CrossRef]

Klacka, J.

M. Kocifaj and J. Klačka, “Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution,” Opt. Lett.37(2), 265–267 (2012).
[CrossRef] [PubMed]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 170–183 (2007).
[CrossRef]

Kocifaj, M.

M. Kocifaj and J. Klačka, “Scattering of electromagnetic waves by charged spheres: near-field external intensity distribution,” Opt. Lett.37(2), 265–267 (2012).
[CrossRef] [PubMed]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 170–183 (2007).
[CrossRef]

Kuzyk, A.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Lakowicz, J. R.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
[CrossRef] [PubMed]

Leung, P. T.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
[CrossRef] [PubMed]

See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
[CrossRef]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
[CrossRef]

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
[CrossRef]

Liao, S.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

Liedl, T.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Lopata, K.

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

Meier, M.

Moroz, A.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Neuhauser, D.

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

Nitzan, A.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Quinten, M.

J. Rostalski and M. Quinten, “Effect of a surface charge on the halfwidth and peak position of cluster plasmons in colloidal metal particles,” Colloid Polym. Sci.274(7), 648–653 (1996).
[CrossRef]

Raptis, A. C.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

Ratner, M. A.

For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
[CrossRef] [PubMed]

Rosenkrantz, E.

Rostalski, J.

J. Rostalski and M. Quinten, “Effect of a surface charge on the halfwidth and peak position of cluster plasmons in colloidal metal particles,” Colloid Polym. Sci.274(7), 648–653 (1996).
[CrossRef]

Ruppin, R.

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76 (4), 1681–1684 (1982). Note that the first work that studied the scattering of dipole radiation from a sphere was in B. van der Pol and H. Bremmer, ” The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Part I,” Philos. Mag.24(159), 141–176 (1937) (however, Ruppin was the first to apply this theory to study the problem of molecular fluorescence near a sphere.).

Schatz, G. C.

For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
[CrossRef] [PubMed]

Schreiber, R.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Simmel, F. C.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Stefani, F. D.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Stein, I. H.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Steinhauer, C.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Sun, G.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Tinnefeld, P.

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Tsai, D. P.

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
[CrossRef] [PubMed]

See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
[CrossRef]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett.37(9), 1583–1585 (2012).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
[CrossRef]

Wall, M. R.

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

Wokaun, A.

Zhang, J.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and P. Tinnefeld, “Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami,” ACS Nano6(4), 3189–3195 (2012).
[CrossRef] [PubMed]

Can. J. Phys. (1)

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55(21), 1930–1935 (1977).
[CrossRef]

Colloid Polym. Sci. (1)

J. Rostalski and M. Quinten, “Effect of a surface charge on the halfwidth and peak position of cluster plasmons in colloidal metal particles,” Colloid Polym. Sci.274(7), 648–653 (1996).
[CrossRef]

J. Chem. Phys. (4)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

C. Arntsen, K. Lopata, M. R. Wall, L. Bartell, and D. Neuhauser, “Modeling molecular effects on plasmon transport: Silver nanoparticles with tartrazine,” J. Chem. Phys.134(8), 084101 (2011).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Equivalence between the mechanical model and energy-transfer theory for the classical decay rates of molecules near a spherical particle,” J. Chem. Phys.136(18), 184106 (2012).
[CrossRef] [PubMed]

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Effects of extraneous surface charges on the enhanced Raman scattering from metallic nanoparticles,” J. Chem. Phys.138(22), 224101 (2013).
[CrossRef] [PubMed]

J. Fluoresc. (1)

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle,” J. Fluoresc.17(6), 811–816 (2007).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (2)

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111(17–18), 2550–2557 (2010).
[CrossRef]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 170–183 (2007).
[CrossRef]

Nano Lett. (1)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

See, e.g.,H. Y. Chung, P. T. Leung, and D. P. Tsai, “Fluorescence characteristics of a molecule in the vicinity of a plasmonic nanomatryoska: nonlocal optical effects,” Opt. Commun.285(8), 2207–2211 (2012).
[CrossRef]

Opt. Lett. (4)

Philos. Mag. (1)

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76 (4), 1681–1684 (1982). Note that the first work that studied the scattering of dipole radiation from a sphere was in B. van der Pol and H. Bremmer, ” The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow. Part I,” Philos. Mag.24(159), 141–176 (1937) (however, Ruppin was the first to apply this theory to study the problem of molecular fluorescence near a sphere.).

Phys. Rev. B (1)

H. Y. Chung, P. T. Leung, and D. P. Tsai, “Decay rates of a molecule in the vicinity of a spherical surface of an isotropic magnetodielectric material,” Phys. Rev. B86(15), 155413 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109(24), 243903 (2012).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

For a good recent review on this topic, see, e.g.H. Chen, G. C. Schatz, and M. A. Ratner, “Experimental and theoretical studies of plasmon-molecule interactions,” Rep. Prog. Phys.75(9), 096402 (2012).
[CrossRef] [PubMed]

Surf. Sci. (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1–2), 1–14 (1988).
[CrossRef]

Other (1)

P. G. Etchegoin and E. C. Le Ru, Surface Enhanced Raman Spectrocopy: Analytical, Biophysical and Life Science Applications (edited by S. Schlucker), pp 1–37 (Wiley-VCH, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the dipole-sphere system with extraneous surface charges.

Fig. 2
Fig. 2

The spectrum of the normalized total decay rate as a function of the emission frequency of the molecule with (a) radial and (b) tangential orientation for the molecule at a distance of 1 nm from a silver sphere of radius 5 nm. The extraneous surface charges on the silver sphere are q 0 =0, q 1 =1.67× 10 16 C, and q 2 =5× 10 16 C as indicated in the figure.

Fig. 3
Fig. 3

Same as Fig. 2, but for the normalized radiative decay rate.

Fig. 4
Fig. 4

Same as Fig. 2, but for the normalized nonradiative rate.

Fig. 5
Fig. 5

Same as Fig. 2, but for the quantum yield.

Fig. 6
Fig. 6

Same as Fig. 2, but for the normalized fluorescence rate.

Fig. 7
Fig. 7

Normalized fluorescence rate as a function of distance from the silver surface. The molecule is along (a) radial and (b) tangential directions. The emission frequencies are set at each of the dipole resonance for the cases q 0 , q 1 , and q 2 with values equal to 0.57 ω p , 0.58 ω p , and 0.58 ω p , respectively. Other parameters are the same as in Fig. 2.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n×( E 1 E 2 )=0,
n×( H 1 H 2 )=0.
n×( H 1 H 2 )=K.
a n = ψ n (x) ψ n (mx) ψ n (x)[ m ψ n (mx)iτ ψ n (mx) ] ξ (x) ψ n (mx) ξ n (x)[ m ψ n (mx)iτ ψ n (mx) ] ,
b n = ψ n (x) ψ n (mx) ψ n (x)[ m ψ n (mx)+iτ ψ n (mx) ] ξ n (x) ψ n (mx) ξ (x)[ m ψ n (mx)+iτ ψ n (mx) ] ,
γ F = | E E 0 | 2 ( γ r γ r + γ nr ),
Y= γ r γ r + γ nr
E E 0 =1+ n=1 i n+1 b n (2n+1) P n 1 (0) h n ( x d ) x d ,
γ =1+ 3 2 Re n=1 n(n+1)(2n+1) b n ( h n ( x d ) x d ) 2 ,
γ r = 3 2 n=1 n(n+1)(2n+1) | j n ( x d )+ b n h n ( x d ) | 2 x d 2 ,
γ nr = 3x 2 x d 2 n=1 n(n+1) | β n h n ( x d ) | 2 [ (n+1) I n1 +n I n+1 ] ,
E E 0 =1+ n=1 i n 2n+1 n(n+1) { a n P ' n (0) h n ( x d )+i b n P n 1 (0) [ x d h n ( x d ) ] x d } ,
γ =1+ 3 4 Re n=1 (2n+1) [ a n h n 2 ( x d )+ b n ( ξ ( x d ) x d ) 2 ],
γ r = 3 4 n=1 (2n+1){ | j n ( x d )+ a n h n ( x d ) | 2 + 1 x d 2 | ψ n ( x d )+ b n ξ n ( x d ) | 2 } ,
γ nr = 3x 4 n=1 { (2n+1) | α n h n ( x d ) | 2 I n + | β n ξ n ( x d ) x d | 2 [ (n+1) I n1 +n I n+1 ] } ,
ε= ε Ag (ω)=1 ω p 2 ω(ω+iΓ) ,

Metrics