Abstract

Growth of hexagonal GaN on Si(100) templates via pulsed laser deposition (PLD) was investigated for the further development of GaN-on-Si technology. The evolution of the GaN growth mechanism at various growth times was monitored by SEM and TEM, which indicated that the GaN growth mode changes gradually from island growth to layer growth as the growth time increases up to 2 hours. Moreover, the high-temperature operation (1000°C) of the PLD meant no significant GaN meltback occurred on the GaN template surface. The completed GaN templates were subjected to MOCVD treatment to regrow a GaN layer. The results of X-ray diffraction analysis and photoluminescence measurements show not only the reliability of the GaN template, but also the promise of the PLD technique for the development of GaN-on-Si technology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
    [CrossRef]
  2. J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
    [CrossRef]
  3. A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
    [CrossRef]
  4. S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
    [CrossRef]
  5. K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
    [CrossRef]
  6. W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
    [CrossRef]
  7. A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
    [CrossRef]
  8. K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
    [CrossRef]
  9. Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
    [CrossRef]
  10. D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
    [CrossRef]
  11. J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
    [CrossRef]
  12. K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
    [CrossRef]
  13. R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013).
    [CrossRef] [PubMed]
  14. C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
    [CrossRef]
  15. T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
    [CrossRef]
  16. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
    [CrossRef]
  17. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
    [CrossRef] [PubMed]
  18. K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
    [CrossRef] [PubMed]
  19. J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
    [CrossRef] [PubMed]
  20. B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
    [CrossRef]
  21. T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
    [CrossRef]
  22. K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
    [CrossRef]
  23. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
    [CrossRef]
  24. Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).
  25. H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
    [CrossRef]
  26. O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
    [CrossRef]
  27. Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).
  28. M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
    [CrossRef]
  29. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
    [CrossRef]
  30. T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992).
    [CrossRef] [PubMed]
  31. A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev.56(10), 978–982 (1939).
    [CrossRef]

2013 (3)

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013).
[CrossRef] [PubMed]

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

2012 (3)

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
[CrossRef] [PubMed]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
[CrossRef] [PubMed]

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

2011 (4)

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

2010 (4)

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

2009 (1)

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

2007 (3)

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

2005 (2)

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

2004 (1)

M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
[CrossRef]

2003 (1)

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

1999 (1)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

1998 (3)

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
[CrossRef]

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

1997 (1)

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

1993 (1)

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

1992 (1)

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992).
[CrossRef] [PubMed]

1939 (1)

A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev.56(10), 978–982 (1939).
[CrossRef]

Akasaki, I.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Aksenov, I.

Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
[CrossRef]

Amano, H.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Arulkumaran, S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

Barna, P. B.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

Bera, L. K.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Bhat, T. N.

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

Blasing, J.

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

Boles, T.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Brandt, O.

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

Bremser, M. D.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

Budai, J. D.

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

Carlson, D.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Chang, C. Y.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Chang, E. Y.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Chang, J. R.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Chen, C. Y.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Chen, P.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Chou, W. C.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Dadgar, A.

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

Davis, R. F.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

Deng, D.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Dharmarasu, N.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

Diez, A.

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

Dolmanan, S. B.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Egawa, T.

M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
[CrossRef]

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Fang, W.

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

Feng, F.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

Fenwick, W. E.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Ferguson, I. T.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Greene, J. E.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

Han, S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Hao, M.

M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
[CrossRef]

Hiramatsu, K.

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Hirosawa, K.

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Honda, Y.

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

Horng, R. H.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013).
[CrossRef] [PubMed]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
[CrossRef] [PubMed]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
[CrossRef] [PubMed]

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Hsiao, Y. L.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Hsu, S. T.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Huang, S. Y.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

Huang, W. C.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Hultman, L.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

Hums, C.

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

Iida, D.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Ikeda, N.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Imade, M.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Ishikawa, H.

M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
[CrossRef]

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Isobe, Y.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Iwaya, M.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Jamil, M.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Jenichen, B.

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

Jiang, F.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

Jimbo, T.

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Kajen, R. S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Kambayashi, H.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Kamiyama, S.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Kato, S.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Kitaoka, Y.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Krost, A.

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

Krupanidhi, S. B.

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

Ku, J. T.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Kumar, M.

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

Kumar, M. K.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Kuo, H. C.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Kuo, Y. W.

Lau, K. M.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Lee, C. T.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Lee, D.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Li, H.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Li, N.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Li, T.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Lin, K. L.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Lin, V. K. X.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Lin, W. Y.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

Liu, H.

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

Liu, J.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

Lo, G. Q.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Maa, J. S.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Melton, A.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Mo, C.

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

Molnar, R. J.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Mori, Y.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Nakada, Y.

Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
[CrossRef]

Nam, O. H.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

Narayan, J.

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

Narayan, R. J.

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

Ng, G. I.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

Niiyama, Y.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Nomura, T.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Okano, M.

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

Okumura, H.

Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
[CrossRef]

Ou, S. L.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Pai, S. F.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

Palacios, T.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Pant, P.

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

Patterson, A. L.

A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev.56(10), 978–982 (1939).
[CrossRef]

Petrov, I.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

Ploog, K. H.

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

Provencio, P. N.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Pu, Y.

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

Radhakrishnan, K.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

Rajpalke, M. K.

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

Roul, B.

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

Sakakibara, T.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

Samara, G. A.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Sato, Y.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Sawaki, N.

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

Shen, C. C.

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Shen, K. C.

R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013).
[CrossRef] [PubMed]

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
[CrossRef] [PubMed]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
[CrossRef] [PubMed]

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Soga, T.

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Summers, C.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Sun, Z.

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

Takagahara, T.

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992).
[CrossRef] [PubMed]

Takeda, K.

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992).
[CrossRef] [PubMed]

Takeuchi, T.

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Tan, J. P. Y.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Teo, S. L.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Todd, S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Trampert, A.

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

Tripathy, S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Turner, G. W.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Tweet, D.

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Umeno, M.

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Varmazis, C.

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Vicknesh, S.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Wang, L.

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

Wang, T. Y.

Wang, W. Z.

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

Wang, Y.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Watanabe, A.

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

Wei, W.

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

Wen, K. S.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

Wilcoxon, J. P.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Wong, Y. Y.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Wu, L. W.

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

Wuu, D. S.

R. H. Horng, K. C. Shen, Y. W. Kuo, and D. S. Wuu, “GaN light emitting diodes with wing-type imbedded contacts,” Opt. Express21(S1Suppl 1), A1–A6 (2013).
[CrossRef] [PubMed]

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target,” Opt. Express20(14), 15149–15156 (2012).
[CrossRef] [PubMed]

K. C. Shen, T. Y. Wang, D. S. Wuu, and R. H. Horng, “High thermal stability of high indium content InGaN films grown by pulsed laser deposition,” Opt. Express20(19), 21173–21180 (2012).
[CrossRef] [PubMed]

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

Xiong, C.

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

Xu, T.

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

Yamaguchi, M.

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

Yamamoto, K.

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

Yang, B.

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

Yang, T. H.

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Yoshida, S.

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Yu, N.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Zhang, J.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

Zheleva, T. S.

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

Zhou, Y.

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

Zou, X.

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

Appl. Phys. Lett. (9)

S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, “AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si(111),” Appl. Phys. Lett.101(8), 082110 (2012).
[CrossRef]

K. Radhakrishnan, N. Dharmarasu, Z. Sun, S. Arulkumaran, and G. I. Ng, “Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si(111) by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.97(23), 232107 (2010).
[CrossRef]

W. E. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. T. Ferguson, “Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si(111) using a thin Al2O3 interlayer,” Appl. Phys. Lett.94(22), 222105 (2009).
[CrossRef]

K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, “Growth of GaN film on 150 nm Si (111) using multilayer AlN/AlGaN buffer by metal-organic vapor phase epitaxy method,” Appl. Phys. Lett.91(22), 222111 (2007).
[CrossRef]

Y. Nakada, I. Aksenov, and H. Okumura, “GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si(111) surfaces by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett.73(6), 827–829 (1998).
[CrossRef]

D. Deng, N. Yu, Y. Wang, X. Zou, H. C. Kuo, P. Chen, and K. M. Lau, “InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates,” Appl. Phys. Lett.96(20), 201106 (2010).
[CrossRef]

J. Liu, F. Feng, Y. Zhou, J. Zhang, and F. Jiang, “Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate,” Appl. Phys. Lett.99(11), 111112 (2011).
[CrossRef]

O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett.71(18), 2638–2640 (1997).
[CrossRef]

M. Hao, H. Ishikawa, and T. Egawa, “Formation chemistry of high density nanocraters on the surface of sapphire substrates with an in situ etching and growth mechanism of device-quality GaN films on the etched substrates,” Appl. Phys. Lett.84(20), 4041–4043 (2004).
[CrossRef]

IEEE Electron Device Lett. (1)

K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett.34(2), 274–276 (2013).
[CrossRef]

J. Appl. Phys. (2)

B. Yang, A. Trampert, O. Brandt, B. Jenichen, and K. H. Ploog, “Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy,” J. Appl. Phys.83(7), 3800–3806 (1998).
[CrossRef]

T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, and S. B. Krupanidhi, “Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si(100) heterojunctions grown by molecular beam epitaxy,” J. Appl. Phys.110(9), 093718 (2011).
[CrossRef]

J. Cryst. Growth (4)

C. Mo, W. Fang, Y. Pu, H. Liu, and F. Jiang, “Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD,” J. Cryst. Growth285(3), 312–317 (2005).
[CrossRef]

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, “Thermal stability of GaN on (111) Si substrate,” J. Cryst. Growth189–190, 178–182 (1998).
[CrossRef]

A. Dadgar, C. Hums, A. Diez, J. Blasing, and A. Krost, “Growth of blue GaN LED structures on 150-mm Si(111),” J. Cryst. Growth297(2), 279–282 (2006).
[CrossRef]

A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer,” J. Cryst. Growth128(1–4), 391–396 (1993).
[CrossRef]

J. Electrochem. Soc. (1)

K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc.158(10), H988–H993 (2011).
[CrossRef]

J. Lumin. (1)

C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, and H. Liu, “The characteristics of GaN-based blue LED on Si substrate,” J. Lumin.122–123, 185–187 (2007).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

J. Narayan, P. Pant, W. Wei, R. J. Narayan, and J. D. Budai, “Nanostructured GaN Nucleation Layer for Light-Emitting Diodes,” J. Nanosci. Nanotechnol.7(8), 2719–2725 (2007).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. A (1)

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A21(5), S117–S128 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. T. Ku, T. H. Yang, J. R. Chang, Y. Y. Wong, W. C. Chou, C. Y. Chang, and C. Y. Chen, “Epitaxial overgrowth of gallium nitride nano-rods on silicon (111) substrates by RF-plasma-assisted molecular beam epitaxy,” Jpn. J. Appl. Phys.49(4), 04DH06 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. (1)

A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev.56(10), 978–982 (1939).
[CrossRef]

Phys. Rev. B (1)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B60(4), 2704–2714 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B Condens. Matter46(23), 15578–15581 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi (3)

Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, “Uniform growth of GaN on AlN templated (111)Si substrate by HVPE,” Phys. Status Solidi C 2(7), 2225–2178 (2005).

Y. Isobe, D. Iida, T. Sakakibara, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, M. Imade, Y. Kitaoka, and Y. Mori, “Optimization of initial MOVPE growth of non-polar m- and a-plane GaN on Na flux grown LPE-GaN substrates,” Phys. Status Solidi C 8(7–8), 2095–2097 (2011).

T. Boles, C. Varmazis, D. Carlson, T. Palacios, G. W. Turner, and R. J. Molnar, “High voltage GaN-on-silicon HEMT,” Phys. Status Solidi10(5), 844–848 (2013).
[CrossRef]

Proc. IEEE (1)

N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, “GaN Power Transistors on Si Substrates for Switching Applications,” Proc. IEEE98(7), 1151–1161 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD of GaN-on-Si(100) template at (a) symmetric (002) and (b) asymmetric (102) plane. Inset of Fig. 1(a) shows the peak of the Si(400) plane at 69.2°.

Fig. 2
Fig. 2

Surface morphologies of the GaN film deposited on Si(100) substrate after (a) 10 min, and (b) 1, (c) 2, and (d) 5 hours. The four dashed lines in Fig. 2(e) correspond to the position of the surface morphology shown in Figs. 2(a)2(d).

Fig. 3
Fig. 3

(a) TEM image of GaN on Si(100) substrate. Electron diffraction patterns of (b) Si, (c) GaN-1, (d) GaN-2, and (e) mixed GaN-1 and GaN-2.

Fig. 4
Fig. 4

Schematic illustration for the GaN deposition behavior on Si(100) substrate by PLD (a) cross-view (b) plan-view

Fig. 5
Fig. 5

PL spectra of GaN on Si(100) substrate as a function of growth time. The XRD rocking curve of GaN film before and after MOCVD growth as a function of growth time displayed in the inset of Fig. 5.

Metrics