Abstract

In the detection of particles using digital in-line holography, measurement accuracy is substantially influenced by the hologram processing method. In particular, a number of methods have been proposed to determine the out-of-plane particle depth (z location). However, due to the lack of consistent uncertainty characterization, it has been unclear which method is best suited to a given measurement problem. In this work, depth determination accuracies of seven particle detection methods, including a recently proposed hybrid method, are systematically investigated in terms of relative depth measurement errors and uncertainties. Both synthetic and experimental holograms of particle fields are considered at conditions relevant to particle sizing and tracking. While all methods display a range of particle conditions where they are most accurate, in general the hybrid method is shown to be the most robust with depth uncertainty less than twice the particle diameter over a wide range of particle field conditions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
    [CrossRef]
  2. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
    [CrossRef]
  3. D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
    [CrossRef]
  4. N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol.24, 024005 (2013).
    [CrossRef]
  5. J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
    [CrossRef]
  6. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt.48, 7000–7007 (2009).
    [CrossRef] [PubMed]
  7. Y. Yang and B. seon Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng.49, 1254–1263 (2011).
    [CrossRef]
  8. J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, “Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography,” Opt. Lett.38, 1893–1895 (2013).
    [CrossRef] [PubMed]
  9. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
    [CrossRef] [PubMed]
  10. S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
    [CrossRef]
  11. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt.49, 1549–1554 (2010).
    [CrossRef] [PubMed]
  12. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50, H1–H9 (2011).
    [CrossRef] [PubMed]
  13. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt.43, 5987–5995 (2004).
    [CrossRef] [PubMed]
  14. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt.48, 2983–2990 (2009).
    [CrossRef] [PubMed]
  15. T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
    [CrossRef]
  16. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol.32, 567–574 (2000).
    [CrossRef]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  18. V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
    [CrossRef]
  19. J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol.20, 075501 (2009).
    [CrossRef]
  20. Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt.51, 255–267 (2012).
    [CrossRef] [PubMed]
  21. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt.50, H22–H29 (2011).
    [CrossRef] [PubMed]
  22. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt.52, 3790–3801 (2013).
    [CrossRef] [PubMed]
  23. V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
    [CrossRef]
  24. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
    [CrossRef]
  25. Y. Yang, B. seon Kang, and Y. jun Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt.47, 817–824 (2008).
    [CrossRef] [PubMed]
  26. G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt.42, 827–833 (2003).
    [CrossRef] [PubMed]
  27. W. Yang, A. B. Kostinski, and R. A. Shaw, “Phase signature for particle detection with digital in-line holography,” Opt. Lett.31, 1399–1401 (2006).
    [CrossRef] [PubMed]
  28. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14, 5895–5908 (2006).
    [CrossRef] [PubMed]
  29. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
    [CrossRef]
  30. S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
    [CrossRef]
  31. F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A24, 1164–1171 (2007).
    [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  33. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to micro-holography,” Appl. Opt.23, 4140–4148 (1984).
    [CrossRef]
  34. D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express18, 2426–2448 (2010).
    [CrossRef] [PubMed]

2013 (3)

2012 (2)

Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt.51, 255–267 (2012).
[CrossRef] [PubMed]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

2011 (5)

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Y. Yang and B. seon Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng.49, 1254–1263 (2011).
[CrossRef]

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50, H1–H9 (2011).
[CrossRef] [PubMed]

Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt.50, H22–H29 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (4)

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol.20, 075501 (2009).
[CrossRef]

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt.48, 2983–2990 (2009).
[CrossRef] [PubMed]

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt.48, 7000–7007 (2009).
[CrossRef] [PubMed]

2008 (3)

Y. Yang, B. seon Kang, and Y. jun Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt.47, 817–824 (2008).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
[CrossRef]

S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
[CrossRef]

2007 (3)

V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A24, 1164–1171 (2007).
[CrossRef]

2006 (3)

2005 (1)

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
[CrossRef]

2004 (2)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt.43, 5987–5995 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (2)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol.32, 567–574 (2000).
[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

1984 (1)

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

Allano, D.

Arroyo, M.

V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
[CrossRef]

Asakura, T.

S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
[CrossRef]

Asundi, A. K.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Atkinson, C.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol.24, 024005 (2013).
[CrossRef]

Barbastathis, G.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

Boucheron, R.

Buchmann, N. A.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol.24, 024005 (2013).
[CrossRef]

Buraga-Lefebvre, C.

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

Callens, N.

Carter, C. D.

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Cen, K.

Chareyron, D.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Chen, J.

Chen, L.

Chen, Y.

Choi, Y. S.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Choi, Y.-S.

Coëtmellec, S.

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

Corbin, F.

Darakis, E.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Denis, L.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A24, 1164–1171 (2007).
[CrossRef]

Domínguez-Caballero, J. A.

Dubois, F.

Fournier, C.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

F. Soulez, L. Denis, C. Fournier, Éric Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A24, 1164–1171 (2007).
[CrossRef]

Fréchou, D.

Fugal, J. P.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol.20, 075501 (2009).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt.43, 5987–5995 (2004).
[CrossRef] [PubMed]

Gao, J.

Gao, Y.

Ge, B.

Gire, J.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Goepfert, C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gouesbet, G.

Grehan, G.

Grosjean, N.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Guildenbecher, D. R.

Huang, L.

Ilchenko, V.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
[CrossRef]

jun Choo, Y.

Kariwala, V.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Katz, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006).
[CrossRef] [PubMed]

Khanam, T.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Kostinski, A. B.

Kulkarni, V.

Lance, M.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Lebrun, D.

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50, H1–H9 (2011).
[CrossRef] [PubMed]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

Lee, J.

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Lee, S. J.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Lee, S.-J.

Lex, T.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
[CrossRef]

Li, G.

Lin, K. C.

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Loomis, N.

Lü, Q.

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006).
[CrossRef] [PubMed]

Marié, J. L.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Méès, L.

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50, H1–H9 (2011).
[CrossRef] [PubMed]

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt.42, 827–833 (2003).
[CrossRef] [PubMed]

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol.32, 567–574 (2000).
[CrossRef]

Naughton, T. J.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Özkul”, C.

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

Palero, V.

V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt.42, 827–833 (2003).
[CrossRef] [PubMed]

Panigrahi, P. K.

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

Rahman, M. N.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

Rajendran, A.

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Reu, P. L.

Sallam, K. A.

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Sattelmayer, T.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
[CrossRef]

Saw, E. W.

Schockaert, C.

Schulz, T. J.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol.20, 075501 (2009).
[CrossRef]

Seo, K. W.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

seon Kang, B.

Y. Yang and B. seon Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng.49, 1254–1263 (2011).
[CrossRef]

Y. Yang, B. seon Kang, and Y. jun Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt.47, 817–824 (2008).
[CrossRef] [PubMed]

Sergeyev, A. V.

Shaw, R. A.

Sheng, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006).
[CrossRef] [PubMed]

Singh, D. K.

Slimani, F.

Sohn, M. H.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Sojka, P. E.

Soontaranon, S.

S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
[CrossRef]

Soria, J.

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol.24, 024005 (2013).
[CrossRef]

V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
[CrossRef]

Soulez, F.

Tang, L.

Thiébaut, Éric

Tian, L.

Walle, F.

Wang, Z.

Widjaja, J.

S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

Wu, X.

Wu, Y.

Yang, W.

Yang, Y.

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol.32, 567–574 (2000).
[CrossRef]

Yourassowsky, C.

Yuan, R.

Zhang, Y.

Appl. Opt. (12)

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to micro-holography,” Appl. Opt.23, 4140–4148 (1984).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: Reconstruction by use of complex amplitude,” Appl. Opt.42, 827–833 (2003).
[CrossRef] [PubMed]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt.43, 5987–5995 (2004).
[CrossRef] [PubMed]

Y. Yang, B. seon Kang, and Y. jun Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt.47, 817–824 (2008).
[CrossRef] [PubMed]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt.48, 2983–2990 (2009).
[CrossRef] [PubMed]

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt.48, 7000–7007 (2009).
[CrossRef] [PubMed]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt.49, 1549–1554 (2010).
[CrossRef] [PubMed]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50, H1–H9 (2011).
[CrossRef] [PubMed]

Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt.50, H22–H29 (2011).
[CrossRef] [PubMed]

Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt.51, 255–267 (2012).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45, 3893–3901 (2006).
[CrossRef] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt.52, 3790–3801 (2013).
[CrossRef] [PubMed]

Chem. Eng. Sci. (2)

T. Khanam, M. N. Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci.66, 2699–2706 (2011).
[CrossRef]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010).
[CrossRef]

Exp. Fluids (2)

V. Palero, M. Arroyo, and J. Soria, “Digital holography for micro-droplet diagnostics,” Exp. Fluids43, 185–195 (2007).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids45, 1023–1035 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Propul. Power (1)

J. Lee, K. A. Sallam, K. C. Lin, and C. D. Carter, “Spray structure in near-injector region of aerated jet in subsonic crossflow,” J. Propul. Power25, 258–266 (2009).
[CrossRef]

Meas. Sci. Technol. (4)

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15, 673 (2004).
[CrossRef]

N. A. Buchmann, C. Atkinson, and J. Soria, “Ultra-high-speed tomographic digital holographic velocimetry in supersonic particle-laden jet flows,” Meas. Sci. Technol.24, 024005 (2013).
[CrossRef]

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol.20, 075501 (2009).
[CrossRef]

New J. Phys. (1)

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Méès, “Testing an in-line digital holography inverse method for the Lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys.14, 043039 (2012).
[CrossRef]

Opt. Commun. (1)

S. Soontaranon, J. Widjaja, and T. Asakura, “Extraction of object position from in-line holograms by using single wavelet coefficient,” Opt. Commun.281, 1461–1467 (2008).
[CrossRef]

Opt. Express (2)

Opt. Laser Eng. (2)

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul”, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Laser Eng.33, 409–421 (2000).
[CrossRef]

Y. Yang and B. seon Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser Eng.49, 1254–1263 (2011).
[CrossRef]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol.32, 567–574 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. Nat. Acad. Sci. USA (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Nat. Acad. Sci. USA104, 17512–17517 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE5851, 123–128 (2005).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Supplementary Material (1)

» Media 1: CSV (69 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DIH for particle field detection: (a) recording and (b) reconstruction.

Fig. 2
Fig. 2

Illustration of the HYBRID method. (a) synthetic in-line hologram. (b) Imin(k, l). (c) Tmax(k, l). (d) DT (k, l). (e) global sharpness profile. (f) ��to{Imin}. (g) {��to{Imin}}. (h) refined particle binary images. Inset: Local intensity Ir(k, l, z′d)

Fig. 3
Fig. 3

Relative depth error and relative depth uncertainty for detection of single circular (a) and square (b) particles ( Media 1).

Fig. 4
Fig. 4

Illustration of the influence of Fresnel number on particle detection. (a) Hologram simulated at F = 0.063, D0 = 200 μm, z0 = 0.3 m. Inset: particle image obtained by reconstruction of the hologram at zr = 0.3 m. (b) Intensity profile along the red dotted line in (a). (c) Intensity profile obtained by reconstruction of the hologram in (a) at zr = z0, z0 ± 10D0. (d) Hologram simulated at F = 0.004, D0 = 40 μm, z0 = 0.2 m. Inset: particle image obtained by reconstruction of the hologram at zr = 0.2 m. (e) Intensity profile along the red dotted line in (d). (f) Intensity profile obtained by reconstruction of the hologram in (d) at zr = z0, z0 ± 10D0. The visibility of the holograms in (a) and (d) is enhanced for clarity. The hologram dimension is 1024 × 7.4 μm. No random noise is included in the simulation.

Fig. 5
Fig. 5

Relative error of in-plane position and size measurement (a) and relative uncertainty of in-plane position and size measurement (b) for the HYBRID method. W: width; H: height.

Fig. 6
Fig. 6

(a) Example synthetic hologram at = 0.013, ρn = 6 mm−2. (b) Example synthetic hologram at = 0.032, ρn = 6 mm−2. (c) Reconstruction of the hologram in (b) at the depth of the particle enclosed by the window. (d) Zoomed-in image of the particle enclosed in (c).

Fig. 7
Fig. 7

Illustration of the processing of experimental holograms. (a) sample hologram. (b) reconstructed intensity at the average particle depth. (c) particle binary image extracted by the HYBRID method. (d) depth distribution of detected particles along the x (horizontal) direction. Image contrast is adjusted for better visibility.

Fig. 8
Fig. 8

A photo of the cuvette filled with silicone oil and particles (a), Sample hologram (b) and the corresponding binary image extracted (c). The hologram contrast is adjusted for better visibility.

Tables (4)

Tables Icon

Table 1 Error of measured mean displacement, mean relative depth error and relative depth uncertainty for detection of synthetic particle fields.

Tables Icon

Table 2 Detection effectiveness and mean size measurement error of the HYBRID method in detection of synthetic particle fields.

Tables Icon

Table 3 Error of measured mean displacement and relative depth uncertainty for measurement of a planar experimental particle field.

Tables Icon

Table 4 Error of measured mean displacement and relative depth uncertainty for measurement of a 3D experimental particle field after removal of the overlapping particles such as those circled in Fig. 8(c).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E r ( k , l , z r ) = 1 { { h ( m , n ) } G ( m , n , z r ) } .
G ( m , n , z r ) = exp ( j 2 π λ z r 1 ( λ m M Δ ξ ) 2 ( λ n N Δ η ) 2 ) circ ( ( λ m M Δ ξ ) 2 + ( λ n N Δ η ) 2 )
I min ( k , l ) = min z r I r ( k , l , z r )
T max ( k , l ) = max z r T ( k , l , z r )
D T ( k , l ) = arg max z r T ( k , l , z r ) .
T ( k , l , z r ) = [ A r ( k , l , z r ) S x ] 2 + [ A r ( k , l , z r ) S y ] 2 ,
S ( t ) = k , l ( { 𝒯 t { I min } } T max ) k , l { 𝒯 t { I min } } ,
S W ( t ) = k , l W ( { 𝒯 t { I min } } T max ) k , l W { 𝒯 t { I min } } ,
LAP ( z r ) = k , l W [ I r ( k , l , z r ) lap ] 2 ,
lap = ( 0 1 0 1 4 1 0 1 0 )
C C ( z r ) = k , l W [ C ( k , l , z r Δ C z / 2 ) C ( k , l , z r + Δ C z / 2 ) ] k , l W [ C ( k , l , z r Δ C z / 2 ) ] 2 k , l W [ C ( k , l , z r + Δ C z / 2 ) ] 2 ,
VAR ( z r ) = 1 N P k , l P [ I r ( k , l , z r ) I ¯ P ( z r ) ] 2 ,
z d = arg min z r [ 1 N P k , l P I r ( k , l , z r ) ] .
z d = 1 N I E k , l I E D I ( k , l ) ,
D I ( k , l ) = arg min z r I r ( k , l , z r )
I G 1 ( z r ) = 1 N E E k , l E E I r ( k , l , z r ) 1 N I E k , l I E I r ( k , l , z r ) ,
IG 2 ( z r ) = 1 N E E k , l E E I r ( k , l , z r ) 1 N P k , l P I r ( k , l , z r ) .
E a ( i ) ( k , l ) = 1 { { E a ( i 1 ) ( k , l ) } G ( k , l , z 0 , i 1 z 0 , i ) } p i ( k , l ) .
p i ( k , l ) = { 0 , ( k Δ ξ x 0 , i ) 2 + ( l Δ η y 0 , i ) 2 D 0 , i / 2 1 , ( k Δ ξ x 0 , i ) 2 + ( l Δ η y 0 , i ) 2 > D 0 , i / 2
h ( m , n ) = | 1 { { E a ( K ) ( k , l ) } G ( k , l , L ) } | 2 ,

Metrics