Abstract

Laser-induced femtosecond damage thresholds of Au and Ag coated pulse compression gratings were measured using 800 nm laser pulses ranging in duration from 30 to 200 fs. These gratings differ from conventional metal-on-photoresist pulse compression gratings in that the gratings patterns are generated by etching the fused silica substrate directly. After etching, the metal overcoating was optimized based on diffraction efficiency and damage threshold considerations. The experiment on these gratings was performed under vacuum for single-shot damage. Single-shot damage threshold, where there is a 0% probability of damage, was determined to be within a 400–800 mJ/cm2 range. The damage threshold exhibited no clear dependence on pulse width, but showed clear dependence on gold overcoat surface morphology. This was confirmed by electromagnetic field modeling using the finite element method, which showed that non-conformal coating morphology gives rise to significant local field enhancement near groove edges, lowering the diffraction efficiency and increasing Joule heating. Large-scale gratings with conformal coating have been installed successfully in the 500 TW Scarlet laser system.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
    [CrossRef]
  2. J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996).
    [CrossRef]
  4. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt.34(10), 1697–1706 (1995).
    [CrossRef] [PubMed]
  5. J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1100-nm range,” Opt. Lett.21(7), 540–542 (1996).
    [CrossRef] [PubMed]
  6. B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
    [CrossRef]
  7. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
    [CrossRef]
  8. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).
  9. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
    [CrossRef]
  10. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
    [CrossRef]
  11. N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260(2), 649–655 (2006).
    [CrossRef]
  12. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express15(23), 15324–15334 (2007).
    [CrossRef] [PubMed]
  13. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express15(19), 12508–12522 (2007).
    [CrossRef] [PubMed]
  14. J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy, “Mixed metal dielectric gratings for pulse compression,” Opt. Express18(23), 23776–23783 (2010).
    [CrossRef] [PubMed]
  15. A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).
  16. F. Kong, Y. Jin, S. Liu, S. Chen, H. Guan, K. He, Y. Du, and H. He, “Femtosecond laser damage of broadband pulse compression gratings,” Chin. Opt. Lett.11(10), 102302 (2013).
  17. E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
    [CrossRef]
  18. A. J. Langley, W. J. Lester, and J. M. Smith, “RF plasma cleaning of compression gratings for intense femtosecond pulses,” Central Laser Facility Annual Report 2003/2004 < http://www.clf.rl.ac.uk/resources/PDF/ar03-04.pdf >.
  19. G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).
  20. T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
    [CrossRef]
  21. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc.,1997).
  22. P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
    [CrossRef]
  23. J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
    [CrossRef]
  24. G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
    [CrossRef]
  25. X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
    [CrossRef]
  26. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
    [CrossRef]
  27. H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
    [CrossRef]
  28. J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
    [CrossRef]
  29. B. Wang and L. Gallais, “A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications,” Opt. Express21(12), 14698–14711 (2013).
    [CrossRef] [PubMed]
  30. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
    [CrossRef]
  31. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
    [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  33. V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
    [CrossRef]

2013 (2)

2012 (2)

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

2010 (4)

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).

A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
[CrossRef]

J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy, “Mixed metal dielectric gratings for pulse compression,” Opt. Express18(23), 23776–23783 (2010).
[CrossRef] [PubMed]

2007 (4)

2006 (1)

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260(2), 649–655 (2006).
[CrossRef]

2005 (3)

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

2004 (2)

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

2003 (1)

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

2002 (1)

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

2001 (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

1999 (2)

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
[CrossRef]

1996 (3)

1995 (2)

R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt.34(10), 1697–1706 (1995).
[CrossRef] [PubMed]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Azechi, H.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Balas, M.

Bataviciute, G.

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Baynard, E.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Bonnemason, F.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Bonod, N.

Bonse, J.

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Boyd, R. D.

Brach, C.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Britten, J. A.

Canova, F.

Chambaret, J. P.

J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).

Chambaret, J.-P.

Chang, C-H.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Charukhchev, A. V.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Chen, C. G.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Chen, H.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
[CrossRef]

Chen, S.

Chen, X.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Chua, S. J.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Cotel, A.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

de Villele, G.

Decker, D. E.

Desserouer, F.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

Du, Y.

Duanwei, H.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Dubrovina, T. G.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Dufft, D.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Dupuy, G.

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

Eggenstein, F.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Eichmann, U.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Emmert, A.

A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
[CrossRef]

Fechner, R.

Feit, M. D.

Flamand, J.

Flury, M.

Forget, N.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Gallais, L.

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

Gang, J.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Gerke, R. R.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Grigas, P.

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

Guan, H.

Gubbini, E.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Güdde, J.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

Hao, T.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

He, H.

He, K.

Heilmann, R. K.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Herman, S.

Hertwig, A.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Hocquet, S.

Hohlfeld, J.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Jin, Y.

Jinglong, M.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Jingyi, M.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Jitsuno, T.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Joo, C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Kaladgew, S.

Kalashnikov, M. P.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Kato, K.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Kawasaki, T.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Kommol, G.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Kong, F.

Konkola, P. T.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Koter, R.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Kruger, J.

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Lavastre, E.

Le Blanc, C.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Le Bris, C.

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Li, L.

Lim, G. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Liming, C.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Liu, S.

Liu, W.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
[CrossRef]

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc.,1997).

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Mathieu, F.

J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).

Matthias, E.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

Melninkaitis, A.

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

Mero, M.

A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Mikami, K.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Mikhailov, M. D.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Miyanaga, N.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Montoya, J. C.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Motokoshi, S.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Murakami, H.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Nakata, Y.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Neauport, J.

Ng, F. L.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Nickles, P. V.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Osvay, K.

J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Palmier, S.

Parriaux, O.

Perry, M. D.

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc.,1997).

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

Razé, G.

Reichardt, G.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Ristau, D.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Rubenchik, A. M.

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

Rudolph, W.

A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Saato, E.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Sall’, E. G.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Sandner, W.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Sarukura, N.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Schattenburg, M. L.

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Schnürer, M.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Schönagel, H.

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Shinizu, T.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Shiraga, H.

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

Shore, B. W.

Smalakys, L.

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Stoian, R.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Stuart, B. C.

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

Tonchev, S.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Uteza, O.

Vinokurova, V. D.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Wang, B.

Wang, X. C.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Wei, Z.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Wellershoff, S.

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

Welsch, E.

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Xia, Y.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
[CrossRef]

Xulei, G.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Yashin, V. E.

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Yi, Z.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Yutong, L.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Zhang, Y.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
[CrossRef]

Zhaohua, W.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Zheng, H. Y.

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

Zhiyi, W.

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

Appl. Opt. (1)

Appl. Phys. A (2)

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).

Appl. Surf. Sci. (3)

X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999).
[CrossRef]

J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

Chinese J. Lasers (1)

G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).

ELI Courier (1)

J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997).
[CrossRef]

J. Appl. Phys. (1)

A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003).
[CrossRef]

Laser Phys. (1)

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007).
[CrossRef]

Opt. Commun. (3)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995).
[CrossRef]

N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260(2), 649–655 (2006).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985).
[CrossRef]

Opt. Eng. (1)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001).
[CrossRef]

Proc. SPIE (2)

T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010).
[CrossRef]

G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012).
[CrossRef]

QELS ’05 (1)

A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).

Quantum Electron. (1)

V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005).
[CrossRef]

Thin Solid Films (1)

J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002).
[CrossRef]

Vacuum (1)

E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004).
[CrossRef]

Other (3)

A. J. Langley, W. J. Lester, and J. M. Smith, “RF plasma cleaning of compression gratings for intense femtosecond pulses,” Central Laser Facility Annual Report 2003/2004 < http://www.clf.rl.ac.uk/resources/PDF/ar03-04.pdf >.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc.,1997).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM image of the conventional sputter-coated grating exhibiting a nonconformal groove structure that will decrease the diffraction efficiency. (b) SEM image showing the energetic sputter-coated grating with a more uniform groove structure, from Plymouth Grating Laboratory.

Fig. 2
Fig. 2

(a) Schematic of vacuum chamber for damage testing. Of note are the autocorrelator to measure pulse width and the 10× microscope objective for in-situ damage verification. (b) Focal spot evolution and respective fit showing M2 < 1.2. (c) Example in-situ damage image in false color.

Fig. 3
Fig. 3

Damage threshold data with curve fits for non-conformal (NC) and conformal (C) samples irradiated with 30 fs pulses. For the Au-coated gratings, the conformal coating has a higher damage threshold than the non-conformal coating. Each data point represents 15 shots with a fluence error of ± 0.02 J/cm2.

Fig. 4
Fig. 4

Pulse width dependence of damage threshold by sample. While the conformal (C) coating clearly has a higher damage threshold than the non-conformal (NC) coating, there is no clear pulse width dependence of the damage threshold observed for either grating type. Each data point represents 15 shots with a fluence error of ± 0.02 J/cm2.

Fig. 5
Fig. 5

Autocorrelation trace of 50 fs pulse after compression by conformal Au gratings at the Scarlet laser facility.

Fig. 6
Fig. 6

SEM image showing intact fused silica substrate at a damage site on the conformal Au grating, produced from a 950 mJ/cm2 pulse.

Fig. 7
Fig. 7

(a) Shapes of the three different gold surfaces corresponding to differently-conforming Au layers. (b)–(d) Color-coded magnetic field enhancement |H/H0| for the gratings C1–C3, respectively, centered around one diffraction ridge (visible at the bottom of each image). Here H0 is the magnetic field of the p-polarized light wave with λ = 800 nm, incident at an angle θ = 46°. The max value of |H/H0| is indicated above each color bar, and decreases for the more conformal curvatures. Other wavelengths within the experimental range were also simulated, with similar field enhancement results to those shown here.

Tables (2)

Tables Icon

Table 1 Single-shot damage thresholds (0% damage probability) in mJ/cm2 for three gratings tested at multiple pulse widths.

Tables Icon

Table 2 Measurements and simulation calculations of the absorptivity A, negative first diffraction order reflectivity R−1, and specular reflectivity R0 for three different grating profiles (with C3 being the most conformal), as well as measured LDT values for the relevant profiles

Metrics