Abstract

A high-sensitivity bioaerosol monitor based on a single 365 nm LED is developed and a calibration approach is discussed for the first time. The fluorescence detection system, which is the core part of the monitor, contains an optical detection module and a fluorescence signal processor configured with a phase sensitive detector (PSD). B800 fluorescent microspheres and staphylococcus are used for performance evaluation of the monitor. B800 microspheres are appropriate as calibration material. The experimental results demonstrate the PSD plays a significant role in improving sensitivity and signal-to-noise ratio (SNR) of detection. Our monitor can detect staphylococcus concentration above 1800 cfu/L of air stably.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watches and C. B. Cox, Bioaerosols Handbook (Lewis Publishers, 1995), Chap. 1.
  2. P. S. Chen and C. S. Li, “Real-time monitoring for bioaerosols—flow cytometry,” Analyst (Lond.)132(1), 14–16 (2006).
    [CrossRef]
  3. E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
    [CrossRef] [PubMed]
  4. Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
    [CrossRef]
  5. M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
    [CrossRef]
  6. C. Feng, L. Huang, J. Wang, Y. Zhao, and H. Huang, “Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles,” Chin. Opt. Lett.9(9), 092901–092904 (2011).
    [CrossRef]
  7. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science and Business Media, 2006), Chap. 3.
  8. D. Richard, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE7484, 74840H, 74840H-15 (2009).
    [CrossRef]
  9. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  10. U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
    [CrossRef]
  11. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
    [CrossRef]
  12. J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
    [CrossRef]
  13. A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).
  14. K. Davitt, Y. K. Song, W. Patterson Iii, A. V. Nurmikko, M. Gherasimova, J. Han, Y. L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express13(23), 9548–9555 (2005).
    [CrossRef] [PubMed]
  15. Y. L. Pan, V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmikko, “Application of light-emitting diodes for aerosol fluorescence detection,” Opt. Lett.28(18), 1707–1709 (2003).
    [CrossRef] [PubMed]
  16. C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
    [CrossRef]
  17. D. J. Rader and V. A. Marple, “Effect of ultra-Stokesian drag and particle interception on impaction characteristics,” Aerosol Sci. Technol.4(2), 141–156 (1985).
    [CrossRef]
  18. V. A. Marple and C. M. Chien, “Virtual impactors: a theoretical study,” Environ. Sci. Technol.14(8), 976–985 (1980).
    [CrossRef] [PubMed]
  19. J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
    [CrossRef]
  20. J. Gao, Detection of Weak Signals (Tsinghua University, 2011), Chap. 4.
  21. A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
    [CrossRef]

2013 (1)

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

2012 (1)

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

2011 (3)

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

C. Feng, L. Huang, J. Wang, Y. Zhao, and H. Huang, “Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles,” Chin. Opt. Lett.9(9), 092901–092904 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

2010 (1)

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

2009 (1)

D. Richard, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE7484, 74840H, 74840H-15 (2009).
[CrossRef]

2008 (2)

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

2006 (1)

P. S. Chen and C. S. Li, “Real-time monitoring for bioaerosols—flow cytometry,” Analyst (Lond.)132(1), 14–16 (2006).
[CrossRef]

2005 (3)

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

K. Davitt, Y. K. Song, W. Patterson Iii, A. V. Nurmikko, M. Gherasimova, J. Han, Y. L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express13(23), 9548–9555 (2005).
[CrossRef] [PubMed]

2004 (2)

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

2003 (1)

1985 (1)

D. J. Rader and V. A. Marple, “Effect of ultra-Stokesian drag and particle interception on impaction characteristics,” Aerosol Sci. Technol.4(2), 141–156 (1985).
[CrossRef]

1980 (1)

V. A. Marple and C. M. Chien, “Virtual impactors: a theoretical study,” Environ. Sci. Technol.14(8), 976–985 (1980).
[CrossRef] [PubMed]

Agranovski, I. E.

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Altman, A.

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

Banani, N.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Bingemer, H.

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Boutou, V.

Bundke, U.

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Cabalo, J.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Carrano, J. C.

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

Chang, R.

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Y. L. Pan, V. Boutou, R. K. Chang, I. Ozden, K. Davitt, and A. V. Nurmikko, “Application of light-emitting diodes for aerosol fluorescence detection,” Opt. Lett.28(18), 1707–1709 (2003).
[CrossRef] [PubMed]

Chen, P. S.

P. S. Chen and C. S. Li, “Real-time monitoring for bioaerosols—flow cytometry,” Analyst (Lond.)132(1), 14–16 (2006).
[CrossRef]

Chen, Q.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Chien, C. M.

V. A. Marple and C. M. Chien, “Virtual impactors: a theoretical study,” Environ. Sci. Technol.14(8), 976–985 (1980).
[CrossRef] [PubMed]

Clark, J. M.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

Clarke, J. M.

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Collins, C. J.

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

Davitt, K.

DeLucia, M.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Evans, S. P.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Eversole, J. D.

Feng, C.

Flagan, R. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Gherasimova, M.

Goad, A.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Han, J.

Hill, S. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

House, J. M.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Huang, H.

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

C. Feng, L. Huang, J. Wang, Y. Zhao, and H. Huang, “Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles,” Chin. Opt. Lett.9(9), 092901–092904 (2011).
[CrossRef]

Huang, L.

Huston, A. L.

Jaenicke, R.

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Kaye, P. H.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Lacis, J.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Li, C. S.

P. S. Chen and C. S. Li, “Real-time monitoring for bioaerosols—flow cytometry,” Analyst (Lond.)132(1), 14–16 (2006).
[CrossRef]

Liu, M.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Marple, V. A.

D. J. Rader and V. A. Marple, “Effect of ultra-Stokesian drag and particle interception on impaction characteristics,” Aerosol Sci. Technol.4(2), 141–156 (1985).
[CrossRef]

V. A. Marple and C. M. Chien, “Virtual impactors: a theoretical study,” Environ. Sci. Technol.14(8), 976–985 (1980).
[CrossRef] [PubMed]

Marquardt, B.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Marx, S.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Moe, A. E.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Narayanan, F.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Nillius, B.

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Nurmikko, A. V.

Ozden, I.

Pan, Y. L.

Pankova, A. V.

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Patterson Iii, W.

Pinnick, R. G.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Pyankov, O. V.

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Rader, D. J.

D. J. Rader and V. A. Marple, “Effect of ultra-Stokesian drag and particle interception on impaction characteristics,” Aerosol Sci. Technol.4(2), 141–156 (1985).
[CrossRef]

Rafailova, E. A.

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Reimann, B.

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Richard, D.

D. Richard, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE7484, 74840H, 74840H-15 (2009).
[CrossRef]

Roth, W.

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

Scotto, C.

Shelton, M. J.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Shen, F.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Sickenberger, D.

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

Simpson, I. A.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Sivaprakasam, V.

Smith, P. D.

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

Song, Y. K.

Tan, M.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Usachev, E. V.

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Wang, J.

Wilson, D. M.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Wu, Y.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Xiong, C.

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

Xu, A.

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

Xu, Z.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Yao, M.

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

Zhang, P.

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

Zhao, Y.

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

C. Feng, L. Huang, J. Wang, Y. Zhao, and H. Huang, “Theoretical studies on bioaerosol particle size and shape measurement from spatial scattering profiles,” Chin. Opt. Lett.9(9), 092901–092904 (2011).
[CrossRef]

Acta Opt. Sin. (1)

A. Xu, C. Xiong, P. Zhang, Y. Zhao, and H. Huang, “Research on dual-channel detection technology of bio-aerosols with intrinsic fluorescence measurement,” Acta Opt. Sin.33(8), 0812005 (2013) (in Chinese).
[CrossRef]

Aerosol Sci. Technol. (2)

Z. Xu, Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao, “Bioaerosol science, technology, and engineering: past, present, and future,” Aerosol Sci. Technol.45(11), 1337–1349 (2011).
[CrossRef]

D. J. Rader and V. A. Marple, “Effect of ultra-Stokesian drag and particle interception on impaction characteristics,” Aerosol Sci. Technol.4(2), 141–156 (1985).
[CrossRef]

Analyst (Lond.) (1)

P. S. Chen and C. S. Li, “Real-time monitoring for bioaerosols—flow cytometry,” Analyst (Lond.)132(1), 14–16 (2006).
[CrossRef]

Atmos. Environ. (1)

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Atmos. Meas. Tech. (1)

U. Bundke, B. Reimann, B. Nillius, R. Jaenicke, and H. Bingemer, “Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH,” Atmos. Meas. Tech.3(1), 263–271 (2010).
[CrossRef]

Chin. Opt. Lett. (1)

Environ. Sci. Technol. (1)

V. A. Marple and C. M. Chien, “Virtual impactors: a theoretical study,” Environ. Sci. Technol.14(8), 976–985 (1980).
[CrossRef] [PubMed]

J. Environ. Monit. (1)

E. V. Usachev, A. V. Pankova, E. A. Rafailova, O. V. Pyankov, and I. E. Agranovski, “Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms,” J. Environ. Monit.14(10), 2739–2745 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (5)

C. J. Collins, A. Altman, W. Roth, and J. C. Carrano, “Low cost, LED-based xMAP analyzer for multiplexed diagnosis and environmental detection of biological agents,” Proc. SPIE7116, 711605, 711605-7 (2008).
[CrossRef]

J. Cabalo, M. DeLucia, A. Goad, J. Lacis, F. Narayanan, and D. Sickenberger, “Overview of the TAC-BIO detector,” Proc. SPIE7116, 71160D, 71160D-11 (2008).
[CrossRef]

J. M. Clark, M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, and P. H. Kaye, “A new real-time biological agent characterisation system,” Proc. SPIE5990, 59900Z, 59900Z-8 (2005).
[CrossRef]

M. J. Shelton, S. P. Evans, P. D. Smith, I. A. Simpson, P. H. Kaye, and J. M. Clarke, “Real-time biological agent detection using particle size, shape and fluorescence characterisation,” Proc. SPIE5617, 284–291 (2004).
[CrossRef]

D. Richard, “LIF bio-aerosol threat triggers: then and now,” Proc. SPIE7484, 74840H, 74840H-15 (2009).
[CrossRef]

Sensor Actuat. Biol. Chem. (1)

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sensor Actuat. Biol. Chem.111–112, 230–241 (2005).

Other (3)

J. Gao, Detection of Weak Signals (Tsinghua University, 2011), Chap. 4.

C. M. Watches and C. B. Cox, Bioaerosols Handbook (Lewis Publishers, 1995), Chap. 1.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science and Business Media, 2006), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Working principle of the bioaerosol monitor. The monitor periodically detects the aerosol concentration and fluorescence intensity before checking the alarm conditions. In the process of particle collection, the laser particle counter continually measures the aerosol particle concentration. (b) The exterior of the monitor.

Fig. 2
Fig. 2

Schematic diagram of the fluorescence detection system. The system consists of an optical detection module and a fluorescence signal processor with a PSD. The long-pass filter and band-pass filter are used in the optical detection module.

Fig. 3
Fig. 3

The fluorescence spectrum of NADH measured with the spectrometer. The optical fluorescence detection module is sensitive to NADH sample. The measured fluorescence spectrum is consistent with emission spectrum of NADH in the wavelength range from 450 nm to 700 nm.

Fig. 4
Fig. 4

Fluorescence background value in two cases. (a) Output signal without a PSD (the noise is obvious and fluorescence signals need smoothing processing); (b) Output signal with the PSD (the noise is reduced effectively)

Fig. 5
Fig. 5

Experimental setup for performance evaluation and calibration of the monitor. B800 microspheres and staphylococcus are aerosolized by the aerosol generator and they form uniform aerosol in the buffer bottle.

Fig. 6
Fig. 6

Relationship of fluorescence voltage to particle concentration of B800 microspheres: the correlation coefficient of the fitted line in the case of PSD is 98.3% and that in the case of no PSD is 96.6%; the fitted line in the case of PSD is steeper than that of no PSD

Fig. 7
Fig. 7

(a) The measured fluorescence results for different staphylococcus concentrations of the monitor. The fluorescence value increases with increase of staphylococcus concentration of air. (b) Sensitivity test results of the monitor in the case of PSD and no PSD when staphylococcus are measured. The lower limit of detection is 1800 cfu/L of staphylococcus concentration with PSD and 2500 cfu/L without PSD. (The red line represents the lowest fluorescence value of detection which is set to 0.1V)

Metrics