Abstract

High-performance integrated optics, solar cells, and sensors require nanoscale optical components at the surface of the device, in order to manipulate, redirect and concentrate light. High-index dielectric resonators provide the possibility to do this efficiently with low absorption losses. The resonances supported by dielectric resonators are both magnetic and electric in nature. Combined scattering from these two can be used for directional scattering. Most applications require strong coupling between the particles and the substrate in order to enhance the absorption in the substrate. However, the coupling with the substrate strongly influences the resonant behavior of the particles. Here, we systematically study the influence of particle geometry and dielectric environment on the resonant behavior of dielectric resonators in the visible to near-IR spectral range. We show the key role of retardation in the excitation of the magnetic dipole (MD) mode, as well as the limit where no MD mode is supported. Furthermore, we study the influence of particle diameter, shape and substrate index on the spectral position, width and overlap of the electric dipole (ED) and MD modes. Also, we show that the ED and MD mode can selectively be enhanced or suppressed using multi-layer substrates. And, by comparing dipole excitation and plane wave excitation, we study the influence of driving field on the scattering properties. Finally, we show that the directional radiation profiles of the ED and MD modes in resonators on a substrate are similar to those of point-dipoles close to a substrate. Altogether, this work is a guideline how to tune magnetic and electric resonances for specific applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
    [CrossRef] [PubMed]
  2. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  4. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. H. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
    [CrossRef] [PubMed]
  5. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
    [CrossRef]
  6. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express16, 19447–19461 (2008).
    [CrossRef] [PubMed]
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  8. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  9. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
    [CrossRef]
  10. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
    [CrossRef] [PubMed]
  11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
    [CrossRef] [PubMed]
  12. G. Mie, “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Ann. Phys.330, 377–445 (1908).
    [CrossRef]
  13. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
    [CrossRef] [PubMed]
  14. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
    [CrossRef]
  15. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009).
    [CrossRef]
  16. A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
    [CrossRef] [PubMed]
  17. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
    [CrossRef]
  18. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
    [CrossRef] [PubMed]
  19. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacelle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express20, 13636–13650 (2012).
    [CrossRef] [PubMed]
  20. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
    [PubMed]
  21. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
    [CrossRef]
  22. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
    [CrossRef] [PubMed]
  23. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
    [CrossRef] [PubMed]
  24. P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
    [CrossRef]
  25. FDTD Solutions, Lumerical Solutions, Inc., http://www.lumerical.com .
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express19, A303–A311 (2011).
    [CrossRef] [PubMed]
  28. T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
    [CrossRef] [PubMed]
  29. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010).
    [CrossRef]
  30. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
    [CrossRef] [PubMed]
  31. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
    [CrossRef] [PubMed]
  32. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
    [CrossRef]
  33. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67, 1607–1614 (1977).
    [CrossRef]
  34. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
    [CrossRef]
  35. M. Kerker, D. Wang, and G. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983).
    [CrossRef]

2013 (7)

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
[CrossRef] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
[CrossRef] [PubMed]

2012 (6)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
[CrossRef] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacelle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express20, 13636–13650 (2012).
[CrossRef] [PubMed]

2011 (5)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
[CrossRef]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
[CrossRef] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express19, A303–A311 (2011).
[CrossRef] [PubMed]

2010 (5)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. H. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

2009 (2)

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009).
[CrossRef]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

2008 (3)

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008).
[CrossRef]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express16, 19447–19461 (2008).
[CrossRef] [PubMed]

1983 (1)

1977 (1)

1908 (1)

G. Mie, “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Aizpurua, J.

Atwater, H. A.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Blanchard, R.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Brongersma, M. L.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009).
[CrossRef]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
[CrossRef] [PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

Capasso, F.

Chantada, L.

Chen, X. W.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Coenen, T.

T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
[CrossRef] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Diehl, L.

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Edamura, T.

Eghlidi, H.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Esteban, R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Fan, J.

Fan, P.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

Ferry, V. E.

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Froufe-Pérez, L. S.

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010).
[CrossRef]

García-Etxarri, A.

Giles, G.

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Gotzinger, S.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

Höppener, C.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008).
[CrossRef]

Huang, K. C. Y.

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

Huang, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Kan, H.

Kerker, M.

Kessels, W. M. M.

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Kukura, P.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Kunz, R. E.

Kuttge, M.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

Lee, K. G.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Lettow, R.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Li, H. B. T.

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

López, C.

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Luk’yanchuck, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Lukosz, W.

Macco, B.

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

Mackowski, S.

Mie, G.

G. Mie, “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Miroschnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Nieto-Vesperinas, M.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

Pflügl, C.

Polman, A.

T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
[CrossRef] [PubMed]

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
[CrossRef] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express19, A303–A311 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. H. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Renger, J.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

Renn, A.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Sáenz, J. J.

Sandoghdar, V.

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Sapienza, R.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

Scheffold, F.

Schmidt, M. K.

Schropp, R. E. I.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009).
[CrossRef]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Spinelli, P.

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
[CrossRef] [PubMed]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express19, A303–A311 (2011).
[CrossRef] [PubMed]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

Suárez-Lacelle, I.

van de Groep, J.

T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
[CrossRef] [PubMed]

van Hulst, N. F.

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

van Lare, C.

Verhagen, E.

Verschuuren, M. A.

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. H. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010).
[CrossRef] [PubMed]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

Walters, R. H.

Wang, D.

Wang, Q. J.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

Yamanishi, M.

Yu, N.

Yu, Y.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
[CrossRef] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Zhang, J. B.

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

ACS Nano (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013).
[CrossRef]

T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Ann. Phys.330, 377–445 (1908).
[CrossRef]

Appl. Phys. Lett. (1)

P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013).
[CrossRef]

J. Opt. Soc. Am. (2)

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009).
[CrossRef]

Nano Lett. (5)

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013).
[CrossRef] [PubMed]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008).
[CrossRef]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012).
[CrossRef] [PubMed]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013).
[PubMed]

P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013).
[CrossRef] [PubMed]

Nat. Commun. (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012).
[CrossRef] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013).
[CrossRef] [PubMed]

Nat. Mater. (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Opt. Express (6)

Phys. Rev. B (2)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010).
[CrossRef]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

FDTD Solutions, Lumerical Solutions, Inc., http://www.lumerical.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Qscat as a function of wavelength for a Si cylinder in air with h = 100 nm and d = 100 nm for optical excitation under normal incidence. The peaks correspond to the ED and MD mode, and the corresponding dipole moments and current loops are shown. The polarization of the driving field is shown in the top right. The inset shows the excitation mechanism of the MD mode. (b) Qscat (color) as a function of λ and h for h = 50 − 250 nm. The particle geometry is shown as an inset. The vertical white line is the crosscut corresponding to the spectrum shown in (a). The white dots correspond to the λ - h combinations used for (c–e). (c–e) Normalized electric field intensity |E|2 (color) and electric field lines (gray) in vertical crosscuts through particles with h = 50 nm (c), h = 100 nm (d) and h = 175 nm (e), parallel to the electric driving field.

Fig. 2
Fig. 2

(a) Qscat as function of wavelength for d = 250 nm particles made of a non-dispersive dielectric with n = 2, plotted for heights in the range h = 50 − 200 nm. The geometry is shown as an inset. The peaks are labeled according to the resonance they correspond to (MD, ED, MQ). For h < 125 nm, no MD is supported. (b) Qscat for the same particles as in (a), but now on a semi-infinite substrate wih n = 2 (see inset for geometry).

Fig. 3
Fig. 3

(a) Qscat (color) as a function of wavelength for a h = 100 nm Si cylinder in air, for diameters in the range d = 50 − 250 nm. The geometry is shown as an inset. The peaks are labeled according to the resonance they correspond to (ED,MD,MQ). (b) Qscat (color) for the same resonator as in (a), but now on a semi-infinite substrate with n = 3.5 (see inset). (c) Spectra corresponding to crosscuts indicated by white certical dashed lines in (a) and (b) showing the spectra for d = 175 nm, in air (red) and on a n = 3.5 substrate (blue). The labels indicate the corresponding resonant modes. (d) Vertical crosscut through the resonator in air (d = 175 nm, see white dot in (a)) in the plane parallel to the H-field of the driving field for λ = 466 nm. Plotted is the normalized |H|2 (color) and the magnetic field lines (gray), showing the MQ mode profile. The corresponding poles are labeled with + and − signs (white).

Fig. 4
Fig. 4

(a) Qscat as a function of wavelength for a Si cylinder with h = 100 nm, d = 100 nm, on a semi-infinite substrate with 1 ≤ nsub ≤ 3.5, in index steps of 0.25. The geometry is shown as an inset. (b) Qscat for the same cylinder (red), a d = 114 nm sphere (green), and a l = 92 nm cube (blue) in air (dashed), all on a nsub = 3.5 semi-infinite substrate (solid). All particles consist of Si and have the same volume. The three geometries are sketched below (a) and (b). Note that the sphere sticks 7 nm into the substrate to prevent an infinitely sharp contact area. (c–e) Vertical crosscuts through the center of all three particles in the plane parallel to the E-field of the source, showing the normalized |E|2 (color) and electric field lines (gray). The particle surroundings and air-substrate interface are indicated with white dashed lines. The respective geometries are shown above the figures. The displacement current loops are clearly visible. (f–h) The same crosscuts as in (c–e), now showing the normalized |H|2 (color) of the MD modes. The magnetic field lines are not plotted since H ∼ 0 in this plane (perpendicular to source H⃗)

Fig. 5
Fig. 5

(a) Qscat as a function of wavelength and oxide thickness t, for a d = 100 nm, h = 100 nm Si cylinder, positioned on top of an oxide layer with thickness t, on top of a semi-infinite substrate with nsub = 3.5. The inset shows the geometry. The horizontal black dashed lines indicate crosscuts at resonance wavelengths: λ = 440 nm (ED) and λ = 499 nm (MD). (b–c) Blue dots show the cross sections from (a), red lines show the fits from the interference model. The free-space wavelengths found from the fit are shown on the bottom left of the figures. The gray dashed lines show the peak value of Qscat for the same particle on a semi-infinite SiO2 substrate (limit of t → ∞).

Fig. 6
Fig. 6

(a) Normalized Qscat for a Si cylinder with d = 100 nm, h = 100 nm in air under plane wave excitation (red), and excited by a vertically oriented electric dipole, calculated by integrating spectra obtained from scanning the dipole position over a horizontal cross-cut through the middle of the particle (blue). The modes are labeled in gray. (b) Excitation mechanism for the in-plane polarized plane wave source (left column) and vertically oriented electric dipole source (right column). The driving mechanism is shown for both the MD mode (top row) and ED mode (bottom row). The driving field orientation is shown on top. The orange circles indicate the displacement current loop inducing m⃗, the red arrows the E-field of the driving field (top row) and p⃗ orientation (bottom row). The blue crosses indicate the out-of-plane orientation of m⃗. (c) Excitation efficiency maps of the EDvert (top) and MDhor (bottom) modes driven by a vertically oriented electric dipole. The cross sections are taken at the particle half-height.

Fig. 7
Fig. 7

(a) Qscat for a Si cylinder with d = 100 nm, h = 100 nm positioned on a semi-infinite substrate with nsub = 1.5 (red) and nsub = 3.5 (blue). The geometry is shown as an inset. The peaks are labeled according to the corresponding resonance (ED / MD) and numbered for reference in (c). (b) fraction of scattered power into the substrate as a function of nsub, at resonance wavelength (blue) and integrated over the entire spectral range (400 − 700 nm). A clear increase in downward scattered power is observed with increasing nsub, attributed to the enhanced LDOS in the substrate. (c) Far-field radiation patterns for the numbered peaks from (a) corresponding to the ED and MD modes of the Si cylinder (top row). 1 − 2 correspond to the ED and MD mode on a nsub = 1.5 respectively, 3 to the MD mode on nsub = 3.5. The gray circles correspond to constant θ with equidistant spacing Δθ = 10°. The white dashed circles correspond to the critical angle θc in the substrate. The orientation of the ED and MD dipole moments are shown on the left. The bottom row shows the calculated radiation patterns of the corresponding point-dipoles (px and my), positioned 50 nm above the substrates with nsub = 1.5 (left, center) and nsub = 3.5 (right). Note that the colorbar of the bottom row has been saturated at 0.7 for visibility.

Fig. 8
Fig. 8

(a) Back scattered power (blue), forward scattered power (green) and forward/backward ratio (red) for a d = 100 nm, h = 100 nm Si cylinder on nsub = 1.5. The red and blue shaded regions indicate the spectral reange of the ED and MD resonances respectively. Note that the oscillations in the red curve for λ > 580 nm are due to numerical noise. (b) Forward/backward scattering ratio as a function of wavelength for different nsub ranging from 1.25 to 3.5 in steps of 0.25.

Metrics