Abstract

This study presents a substantial enhancement in electroluminescence achieved by depositing Ag nanoparticles on an ITO-coated glass substrate (Ag/ITO) for approximately 10-s to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly[9,9-dioctylfluorene-co-benzothiadiazole] (F8BT) emissive layer. In addition to its low cost, this novel fabrication method can effectively increase the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the increased conductivity and work function of the Ag/ITO substrate, the electroluminescence intensity was increased by nearly 3.3-fold compared with that of the same PLED with a bare ITO substrate.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
    [CrossRef]
  2. T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
    [CrossRef]
  3. J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
    [CrossRef]
  4. Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
    [CrossRef]
  5. X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
    [CrossRef]
  6. C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
    [CrossRef] [PubMed]
  7. C. Guillén and J. Herrero, “Plasmonic characteristics of Ag and ITO/Ag ultrathin films as-grown by sputtering at room temperature and after heating,” J. Phys. D46(29), 295302 (2013).
    [CrossRef]
  8. E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
    [CrossRef]
  9. H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
    [CrossRef]
  10. S.-H. Chen, “Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy,” J. Appl. Phys.97(7), 073713 (2005).
    [CrossRef]
  11. S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
    [CrossRef]
  12. S.-H. Chen and C.-F. Yu, “Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer light-emitting diodes,” Microsc. Res. Tech.73(3), 202–205 (2010).
    [PubMed]
  13. S.-H. Chen and J.-Y. Jhong, “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode,” Opt. Express19(18), 16843–16850 (2011).
    [CrossRef] [PubMed]
  14. J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48(8), 3524–3531 (1977).
    [CrossRef]
  15. J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
    [CrossRef]
  16. J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
    [CrossRef]
  17. Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett.86(16), 3602–3605 (2001).
    [CrossRef] [PubMed]
  18. W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
    [CrossRef]
  19. D. M. Basko and E. M. Conwell, “Stationary Polaron Motion in a Polymer Chain at High Electric Fields,” Phys. Rev. Lett.88(5), 056401 (2002).
    [CrossRef] [PubMed]

2013 (2)

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

C. Guillén and J. Herrero, “Plasmonic characteristics of Ag and ITO/Ag ultrathin films as-grown by sputtering at room temperature and after heating,” J. Phys. D46(29), 295302 (2013).
[CrossRef]

2012 (2)

Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
[CrossRef]

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

2011 (2)

S.-H. Chen and J.-Y. Jhong, “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode,” Opt. Express19(18), 16843–16850 (2011).
[CrossRef] [PubMed]

J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
[CrossRef]

2010 (1)

S.-H. Chen and C.-F. Yu, “Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer light-emitting diodes,” Microsc. Res. Tech.73(3), 202–205 (2010).
[PubMed]

2008 (1)

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

2007 (1)

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

2006 (2)

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

2005 (1)

S.-H. Chen, “Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy,” J. Appl. Phys.97(7), 073713 (2005).
[CrossRef]

2003 (2)

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
[CrossRef]

2002 (2)

D. M. Basko and E. M. Conwell, “Stationary Polaron Motion in a Polymer Chain at High Electric Fields,” Phys. Rev. Lett.88(5), 056401 (2002).
[CrossRef] [PubMed]

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

2001 (2)

Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett.86(16), 3602–3605 (2001).
[CrossRef] [PubMed]

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
[CrossRef]

1977 (1)

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48(8), 3524–3531 (1977).
[CrossRef]

Aziz, H.

Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
[CrossRef]

Bae, J.-H.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Basko, D. M.

D. M. Basko and E. M. Conwell, “Stationary Polaron Motion in a Polymer Chain at High Electric Fields,” Phys. Rev. Lett.88(5), 056401 (2002).
[CrossRef] [PubMed]

Berleb, S.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
[CrossRef]

Bertran, E.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Brütting, W.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
[CrossRef]

Cacialli, F.

J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
[CrossRef]

Chen, J.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Chen, S. A.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Chen, S. H.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Chen, S.-H.

S.-H. Chen and J.-Y. Jhong, “Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode,” Opt. Express19(18), 16843–16850 (2011).
[CrossRef] [PubMed]

S.-H. Chen and C.-F. Yu, “Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer light-emitting diodes,” Microsc. Res. Tech.73(3), 202–205 (2010).
[PubMed]

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

S.-H. Chen, “Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy,” J. Appl. Phys.97(7), 073713 (2005).
[CrossRef]

Chong, L.-W.

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

Chung, C.-T.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Conwell, E. M.

D. M. Basko and E. M. Conwell, “Stationary Polaron Motion in a Polymer Chain at High Electric Fields,” Phys. Rev. Lett.88(5), 056401 (2002).
[CrossRef] [PubMed]

Corbella, C.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Fan, J. C. C.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48(8), 3524–3531 (1977).
[CrossRef]

Fang, J.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Feng, G.-W.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Friend, R.

J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
[CrossRef]

Goodenough, J. B.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48(8), 3524–3531 (1977).
[CrossRef]

Guillén, C.

C. Guillén and J. Herrero, “Plasmonic characteristics of Ag and ITO/Ag ultrathin films as-grown by sputtering at room temperature and after heating,” J. Phys. D46(29), 295302 (2013).
[CrossRef]

Guo, T.-F.

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Herrero, J.

C. Guillén and J. Herrero, “Plasmonic characteristics of Ag and ITO/Ag ultrathin films as-grown by sputtering at room temperature and after heating,” J. Phys. D46(29), 295302 (2013).
[CrossRef]

Hsieh, S.-N.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Hsu, T.-W.

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

Jeong, J.-A.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Jeong, S.-W.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Jhong, J.-Y.

Jiu, T.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Johansson, Å.

Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett.86(16), 3602–3605 (2001).
[CrossRef] [PubMed]

Kang, J.-W.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Kim, C.-I.

J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
[CrossRef]

Kim, J.-J.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Kim, J.-S.

J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
[CrossRef]

Kima, H.-K.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Lee, Y.-L.

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

Li, X.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Lin, H. L.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Lin, H. N.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Lin, Y.-S.

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

Ma, D.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Min, C.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Moon, J.-M.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Mückl, A. G.

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
[CrossRef]

Park, N.-J.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Perng, G. Y.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Person, C.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Pinyol, A.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Porqueras, I.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Qiao, X.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Shi, C.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Stafström, S.

Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett.86(16), 3602–3605 (2001).
[CrossRef] [PubMed]

Tsai, D. P.

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

Tsai, Z.-J.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Tu, G.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Vives, M.

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Wang, L.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Wang, Q.

Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
[CrossRef]

Wang, S. S.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Wen, T.-C.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

Wi, J.-H.

J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
[CrossRef]

Williams, G.

Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
[CrossRef]

Woo, J.-C.

J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
[CrossRef]

Wu, C.-I.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Xie, W.-J.

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

Xie, Y.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Yang, F.-S.

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

Yi, M.-S.

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

Yu, C.-F.

S.-H. Chen and C.-F. Yu, “Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer light-emitting diodes,” Microsc. Res. Tech.73(3), 202–205 (2010).
[PubMed]

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

Yu, L. S.

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

Zhang, W.

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Zhu, X.

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma, and J. Fang, “A small-molecule zwitterionic electrolyte without a π-delocalized unit as a charge-injection layer for high-performance PLEDs,” Angew. Chem. Int. Ed. Engl.52(12), 3417–3420 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

L.-W. Chong, Y.-L. Lee, T.-C. Wen, and T.-F. Guo, “Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes,” Appl. Phys. Lett.89(23), 233513 (2006).
[CrossRef]

T.-F. Guo, F.-S. Yang, Z.-J. Tsai, G.-W. Feng, T.-C. Wen, S.-N. Hsieh, C.-T. Chung, and C.-I. Wu, “High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode,” Appl. Phys. Lett.89(5), 051103 (2006).
[CrossRef]

J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kima, J.-W. Kang, J.-J. Kim, and M.-S. Yi, “Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes,” Appl. Phys. Lett.90(16), 163516 (2007).
[CrossRef]

H. N. Lin, H. L. Lin, S. S. Wang, L. S. Yu, G. Y. Perng, S. A. Chen, and S. H. Chen, “Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy,” Appl. Phys. Lett.81(14), 2572 (2002).
[CrossRef]

J. Appl. Phys. (3)

S.-H. Chen, “Work function changes of treated indium-tin-oxide films for organic light emitting diodes investigated using scanning surface potential microscopy,” J. Appl. Phys.97(7), 073713 (2005).
[CrossRef]

S.-H. Chen, C.-F. Yu, Y.-S. Lin, W.-J. Xie, T.-W. Hsu, and D. P. Tsai, “Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy,” J. Appl. Phys.104(11), 114314 (2008).
[CrossRef]

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48(8), 3524–3531 (1977).
[CrossRef]

J. Mater. Chem. (1)

X. Zhu, Y. Xie, X. Li, X. Qiao, L. Wang, and G. Tu, “Anionic conjugated polyelectrolyte–wetting properties with an emission layer and free ion migration when serving as a cathode interface layer in polymer light emitting diodes (PLEDs),” J. Mater. Chem.22(31), 15490–15494 (2012).
[CrossRef]

J. Phys. D (1)

C. Guillén and J. Herrero, “Plasmonic characteristics of Ag and ITO/Ag ultrathin films as-grown by sputtering at room temperature and after heating,” J. Phys. D46(29), 295302 (2013).
[CrossRef]

Microsc. Res. Tech. (1)

S.-H. Chen and C.-F. Yu, “Differences between nanoscale structural and electrical properties of AZO:N and AZO used in polymer light-emitting diodes,” Microsc. Res. Tech.73(3), 202–205 (2010).
[PubMed]

Opt. Express (1)

Org. Electron. (1)

Q. Wang, G. Williams, and H. Aziz, “Photo-degradation of the indium tin oxide (ITO)/organic interface in organic optoelectronic devices and a new outlook on the role of ITO surface treatments and interfcial layers in improving device stability,” Org. Electron.13(10), 2075–2082 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

D. M. Basko and E. M. Conwell, “Stationary Polaron Motion in a Polymer Chain at High Electric Fields,” Phys. Rev. Lett.88(5), 056401 (2002).
[CrossRef] [PubMed]

Å. Johansson and S. Stafström, “Polaron dynamics in a system of coupled conjugated polymer chains,” Phys. Rev. Lett.86(16), 3602–3605 (2001).
[CrossRef] [PubMed]

Solid State Ion. (1)

E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, and I. Porqueras, “RF sputtering deposition of Ag/ITO coatings at room temperature,” Solid State Ion.165(1-4), 139–148 (2003).
[CrossRef]

Synth. Met. (1)

W. Brütting, S. Berleb, and A. G. Mückl, “Space-charge limited conduction with a field and temperature dependent mobility in Alq light-emitting devices,” Synth. Met.122(1), 99–104 (2001).
[CrossRef]

Thin Solid Films (2)

J.-S. Kim, F. Cacialli, and R. Friend, “Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes,” Thin Solid Films445(2), 358–366 (2003).
[CrossRef]

J.-H. Wi, J.-C. Woo, and C.-I. Kim, “Surface treatments of indium tin oxide films by using high density plasma,” Thin Solid Films519(20), 6824–6828 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-sectional view of the proposed PLED structure. (b) Optical transmittance spectra of the bare and the Ag-dispersed ITO substrates in the wavelength rang 350-800 nm.

Fig. 2
Fig. 2

Topography (left) and current (right) images of (a) the bare ITO and the Ag deposited on ITO at room temperature for (b) 10-, (c) 20-, (d) 30-, (e) 40-, and (f) 50-s. The bare ITO and the Ag/ITO were biased to + 10 mV, and the tip was grounded.

Fig. 3
Fig. 3

(a) O 1s core-level spectra for bare ITO and Ag/ITO substrates prepared with different Ag deposition process times. (b), (c), and (d) show the curve-fitting results obtained from (a).

Fig. 4
Fig. 4

Representative J-V plots for all hole-only devices (HOD).

Fig. 5
Fig. 5

(a) Luminescence-voltage characteristics, (b) efficiency, (c) luminescence enhancement, and (d) electroluminescence spectra normalized by the peak intensities for Ag-dispersed PLEDs with different Ag deposition process times in comparison with a normal PLED. Inset of (a): current density-voltage characteristics of the devices.

Tables (1)

Tables Icon

Table 1 Ag thicknesses and concentrations, RMS roughness values, coverage percentages of conducting regions, and mean WFs of bare ITO and Ag/ITO surfaces prepared using various Ag deposition process times. Note that “NPs” means “nanoparticles”.

Metrics