Abstract

In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
    [CrossRef]
  2. H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
    [CrossRef]
  3. E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
    [CrossRef]
  4. F. Hild and S. Roux, “Digital Image Correlation: from displacement Measurement to identification of elastic properties – a review,” Strain42(2), 69–80 (2006).
    [CrossRef]
  5. J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
    [CrossRef]
  6. D. Mas, J. Espinosa, A. B. Roig, B. Ferrer, J. Perez, and C. Illueca, “Measurement of wide frequency range structural microvibrations with a pocket digital camera and sub-pixel techniques,” Appl. Opt.51(14), 2664–2671 (2012).
    [CrossRef] [PubMed]
  7. D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
    [CrossRef]
  8. D. Mas, B. Ferrer, J. T. Sheridan, and J. Espinosa, “Resolution limits to object tracking with subpixel accuracy,” Opt. Lett.37(23), 4877–4879 (2012).
    [CrossRef] [PubMed]
  9. J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
    [CrossRef]
  10. D. Mas, B. Domenech, J. Espinosa, J. Pérez, C. Hernández, and C. Illueca, “Noninvasive measurement of eye retraction during blinking,” Opt. Lett.35(11), 1884–1886 (2010).
    [CrossRef] [PubMed]
  11. B. Ferrer, J. Espinosa, J. Perez, S. Ivorra, and D. Mas, “Optical scanning for structural vibration measurement,” Res. Nondestruct. Eval.22(2), 61–75 (2011).
    [CrossRef]
  12. J. Espinosa, B. Ferrer, D. Mas, J. Perez and A. B. Roig, “Método y sistema para medir vibraciones,” Patent pending nº P201300498 (05–23–2013).
  13. Casio Europe at http://www.casio-europe.com/euro/exilim/exilimzrserie/exzr1000/ (visited on 09/03/2013).
  14. AOS Technologies at, http://www.aostechnologies.com/high-speed-imaging/products-high-speed/ (visited on 10/09/2013).

2012 (2)

2011 (2)

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
[CrossRef]

B. Ferrer, J. Espinosa, J. Perez, S. Ivorra, and D. Mas, “Optical scanning for structural vibration measurement,” Res. Nondestruct. Eval.22(2), 61–75 (2011).
[CrossRef]

2010 (2)

2007 (1)

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

2006 (1)

F. Hild and S. Roux, “Digital Image Correlation: from displacement Measurement to identification of elastic properties – a review,” Strain42(2), 69–80 (2006).
[CrossRef]

2005 (1)

H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
[CrossRef]

1995 (1)

J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
[CrossRef]

1994 (1)

J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Barron, J. L.

J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Beauchemin, S.

J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Cho, S.

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

Cretin, B.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
[CrossRef]

Davis, J.

H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
[CrossRef]

Domenech, B.

Espinosa, J.

Euphrasie, S.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
[CrossRef]

Ferrer, B.

Fleet, D. J.

J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

Fukuda, Y.

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

García, J.

E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
[CrossRef]

Gindy, M.

H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
[CrossRef]

Hernández, C.

Hild, F.

F. Hild and S. Roux, “Digital Image Correlation: from displacement Measurement to identification of elastic properties – a review,” Strain42(2), 69–80 (2006).
[CrossRef]

Huang, Y.

J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
[CrossRef]

Illueca, C.

Ivorra, S.

B. Ferrer, J. Espinosa, J. Perez, S. Ivorra, and D. Mas, “Optical scanning for structural vibration measurement,” Res. Nondestruct. Eval.22(2), 61–75 (2011).
[CrossRef]

Jansa, J.

J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
[CrossRef]

Lee, J. J.

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

Mas, D.

Micó, V.

E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
[CrossRef]

Nassif, H. N.

H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
[CrossRef]

Perez, J.

Pérez, J.

Roig, A. B.

Roux, S.

F. Hild and S. Roux, “Digital Image Correlation: from displacement Measurement to identification of elastic properties – a review,” Strain42(2), 69–80 (2006).
[CrossRef]

Sheridan, J. T.

Shinozuka, M.

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

Teyssieux, D.

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
[CrossRef]

Trinder, J. C.

J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
[CrossRef]

Valero, E.

E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
[CrossRef]

Yun, C.

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

Zalevsky, Z.

E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
[CrossRef]

Appl. Opt. (1)

Int. J. Comput. Vis. (1)

J. L. Barron, D. J. Fleet, and S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis.12(1), 43–77 (1994).
[CrossRef]

ISPRS J. Photogramm. (1)

J. C. Trinder, J. Jansa, and Y. Huang, “An assessment of the precision and accuracy of methods of digital target localization,” ISPRS J. Photogramm.50(2), 12–20 (1995).
[CrossRef]

Measurement (1)

D. Teyssieux, S. Euphrasie, and B. Cretin, “MEMS in-plane motion/vibration measurement system based CCD camera,” Measurement44(10), 2205–2216 (2011).
[CrossRef]

NDT Int. (1)

H. N. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT Int.38(3), 213–218 (2005).
[CrossRef]

Opt. Commun. (1)

E. Valero, V. Micó, Z. Zalevsky, and J. García, “Depth sensing using coherence mapping,” Opt. Commun.283(16), 3122–3128 (2010).
[CrossRef]

Opt. Lett. (2)

Res. Nondestruct. Eval. (1)

B. Ferrer, J. Espinosa, J. Perez, S. Ivorra, and D. Mas, “Optical scanning for structural vibration measurement,” Res. Nondestruct. Eval.22(2), 61–75 (2011).
[CrossRef]

Smart Struct. Syst. (1)

J. J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures,” Smart Struct. Syst.3(3), 373–384 (2007).
[CrossRef]

Strain (1)

F. Hild and S. Roux, “Digital Image Correlation: from displacement Measurement to identification of elastic properties – a review,” Strain42(2), 69–80 (2006).
[CrossRef]

Other (3)

J. Espinosa, B. Ferrer, D. Mas, J. Perez and A. B. Roig, “Método y sistema para medir vibraciones,” Patent pending nº P201300498 (05–23–2013).

Casio Europe at http://www.casio-europe.com/euro/exilim/exilimzrserie/exzr1000/ (visited on 09/03/2013).

AOS Technologies at, http://www.aostechnologies.com/high-speed-imaging/products-high-speed/ (visited on 10/09/2013).

Supplementary Material (6)

» Media 1: MOV (397 KB)     
» Media 2: MOV (1070 KB)     
» Media 3: MOV (1496 KB)     
» Media 4: MOV (397 KB)     
» Media 5: MOV (1070 KB)     
» Media 6: MOV (1496 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Binary object scene. Border pixels are marked in gray; (b) scene in (a) after spatial quantization; (c) scene in (a) after a horizontal shift of 0.25 px.

Fig. 2
Fig. 2

Pictures of the specimens under analysis: (a) tuning fork; (b) loudspeaker membrane; (c) bridge passage.

Fig. 3
Fig. 3

Arms of a vibrating tuning fork and ROI analyzed. Notice that ROI size is 18 × 17 px. (Media 1)

Fig. 4
Fig. 4

Binary levels thresholded for the ROI in Fig. 2. Above each image, we write the gray threshold level.

Fig. 5
Fig. 5

a) Relative variation with respect to the first frame (absolute value) of the pixel number. b) Fourier transform of the signals in a).

Fig. 6
Fig. 6

Membrane of a vibrating loudspeaker and ROI analyzed. Notice that ROI size is 17 × 36 px (Media 2)

Fig. 7
Fig. 7

Normalized frequency spectra obtained by analyzing the number of pixels variation (camera) in red and the sound intensity (microphone) in blue measured from the loudspeaker membrane.

Fig. 8
Fig. 8

a) Frame view of the bridge and ROI selected 13 × 15 px. (Media 3); b) Accelerometer signal and time window analyzed.

Fig. 9
Fig. 9

Normalized frequency spectrum obtained from the camera and the accelerometer.

Metrics