Abstract

We report a novel graphene oxide (GO) based p-n heterojunction on n-Si. The fabricated vertical GO/n-Si heterojunction diode shows a very low leakage current density of 0.25 µA/cm2 and excellent rectification characteristics upto 1 MHz. The device on illumination shows a broadband (300–1100 nm) spectral response with a characteristic peak at ~700 nm, in agreement with the photoluminescence emission from GO. Very high photo-to-dark current ratio (>105) is observed upon illumination of UV light. The transient photocurrent measurements indicate that the GO based heterojunction diodes can be useful for UV and broadband photodetectors, compatible with silicon device technology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
    [CrossRef] [PubMed]
  2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
    [CrossRef] [PubMed]
  3. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
    [CrossRef] [PubMed]
  4. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
    [CrossRef] [PubMed]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  6. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
    [CrossRef] [PubMed]
  7. M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol.3(8), 455–457 (2008).
    [CrossRef] [PubMed]
  8. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
    [CrossRef] [PubMed]
  9. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
    [CrossRef] [PubMed]
  10. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
    [CrossRef]
  11. G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
    [CrossRef] [PubMed]
  12. S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012).
    [CrossRef]
  13. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
    [CrossRef] [PubMed]
  14. G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009).
    [CrossRef] [PubMed]
  15. Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
    [CrossRef]
  16. J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
    [CrossRef]
  17. X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
    [CrossRef] [PubMed]
  18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
    [CrossRef]
  19. M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
    [CrossRef]
  20. C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
    [CrossRef] [PubMed]
  21. S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
    [CrossRef]
  22. J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
    [CrossRef]
  23. J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
    [CrossRef] [PubMed]
  24. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
    [CrossRef] [PubMed]
  25. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
    [CrossRef]
  26. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
    [CrossRef] [PubMed]
  27. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
    [CrossRef]
  28. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
    [CrossRef] [PubMed]
  29. J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
    [CrossRef] [PubMed]
  30. C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
    [CrossRef]
  31. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).
  32. R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
    [CrossRef]
  33. S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).
  34. B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
    [CrossRef]
  35. N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
    [CrossRef]
  36. W.-C. Wang, “ Optical Detectors,” http://depts.washington.edu/mictech/optics/sensors/detector.pdf

2012 (5)

S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012).
[CrossRef]

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

2011 (1)

B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
[CrossRef]

2010 (5)

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

2009 (9)

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009).
[CrossRef] [PubMed]

J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
[CrossRef] [PubMed]

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

2008 (10)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
[CrossRef] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol.3(8), 455–457 (2008).
[CrossRef] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

2007 (4)

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

1958 (1)

J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Ahn, J. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Ai, W.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Alia, V.

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

Bae, D. J.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, Q. L.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Bao, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Becerril, H. A.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Bozoklu, G.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Brus, L. E.

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Carbone, F.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Casiraghi, C.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Chan, C.-H.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

Chen, C.-W.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, H.-A.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, I.-S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, K.-H.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, L.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, M.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chen, Y.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Cheng, F.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Cheng, H.-M.

S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012).
[CrossRef]

Chhowalla, M.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009).
[CrossRef] [PubMed]

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
[CrossRef] [PubMed]

Chien, C.-T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Chitara, B.

B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
[CrossRef]

Chou, M. Y.

J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
[CrossRef] [PubMed]

Chunder, A.

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Eda, G.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009).
[CrossRef] [PubMed]

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
[CrossRef] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Fanchini, G.

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
[CrossRef] [PubMed]

Fang, G.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Ferrari, A. C.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Field, D. A.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Freitag, M.

M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol.3(8), 455–457 (2008).
[CrossRef] [PubMed]

Fujita, T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Geim, A. K.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Gurzadyan, G. G.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Hummers, S.

J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Husain, M.

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Isoda, S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Jeong, H. K.

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

Jeong, H.-K.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Jin, M.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Johnson, A. T. C.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

Jung, I.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Kang, B. R.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Kang, E.-T.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Kazim, S.

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

Khondaker, S. I.

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

Kikkawa, J. M.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Kim, P.

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Kim, Y. J.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Krupanidhi, S. B.

B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
[CrossRef]

Kuzmenko, A. B.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

Lahaye, R. J. W. E.

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

Lai, W.-J.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Lazzeri, M.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Lee, Y. H.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Li, J.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Li, P.-P.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Li, S.-S.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Li, Y.-X.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Lin, C.-C.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

Lin, C.-H.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

Lin, J. H.

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

Lin, Y. J.

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

Liu, G.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Liu, N.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Liu, Q.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

Liu, Z.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Loh, K. P.

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Luo, Z.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

Ma, L.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Mao, J.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Martínez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Mattevi, C.

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

Mauri, F.

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Mazharul Haq, M.

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

Mele, E. J.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Nemoto, T.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Noeh, K.-G.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Novoselov, K. S.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Offeman, R. E.

J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Park, C. Y.

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

Park, J. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Park, S.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Pei, S.

S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012).
[CrossRef]

Piner, R. D.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Rao, C. N. R.

B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
[CrossRef]

Ruoff, R. S.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Ryu, S.

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Sarker, B. K.

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Shang, J.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Solís-Fernández, P.

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Stankovich, S.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Stoller, M.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Stoltenberg, R. M.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Su, Y. C.

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

Tascon, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Tascón, J. M.

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Tascón, J. M. D.

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

van der Marel, D.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

van Heumen, E.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

Velamakanni, A.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Ventrice, C. A.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Vora, P. M.

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

William, J.

J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Wu, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

Xian, L.

J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
[CrossRef] [PubMed]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Yamaguchi, H.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

Yan, J. A.

J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
[CrossRef] [PubMed]

Yang, D.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

Yang, L.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

Yeh, W.-T.

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

Yeh, Y.-C.

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Yin, S.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

Yu, T.

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Yu, W. J.

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Yu, Y.-J.

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Yuan, L.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zeng, J. J.

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

Zeng, W.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zhai, L.

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

Zhang, B.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Zhang, N.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

Zhang, X.

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

Zhao, X.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zhao, Y.

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Zheng, Q.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

Zhou, H.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zhu, C.-X.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Zhu, J.-H.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Zhuang, X.-D.

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Zou, X.

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

Zulfequar, M.

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

ACS Appl. Mater. Interfaces (1)

N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010).
[CrossRef]

ACS Nano (1)

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009).
[CrossRef]

B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011).
[CrossRef]

S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010).
[CrossRef]

Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008).
[CrossRef]

J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012).
[CrossRef]

Carbon (3)

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009).
[CrossRef]

S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

J. Phys. Chem. C (1)

G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009).
[CrossRef]

Langmuir (2)

J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008).
[CrossRef] [PubMed]

Nano Lett. (3)

G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009).
[CrossRef] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008).
[CrossRef] [PubMed]

Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012).
[CrossRef] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (4)

S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010).
[CrossRef] [PubMed]

M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol.3(8), 455–457 (2008).
[CrossRef] [PubMed]

G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008).
[CrossRef] [PubMed]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (1)

R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009).
[CrossRef] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008).
[CrossRef] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008).
[CrossRef] [PubMed]

Physica B (1)

S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).

Sci. Rep. (1)

J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).

Science (1)

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008).
[CrossRef] [PubMed]

Other (1)

W.-C. Wang, “ Optical Detectors,” http://depts.washington.edu/mictech/optics/sensors/detector.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the Al/GO/n-Si heterojunction photo-diode.

Fig. 2
Fig. 2

Typical AFM image of graphene oxide sheets and corresponding height profile.

Fig. 3
Fig. 3

(a) Typical Raman spectra for graphene oxide showing D band (1356 cm−1) and G band (1590 cm−1); (b) High-resolution C1S XPS spectrum of graphene oxide showing different chemical bonding.

Fig. 4
Fig. 4

(a) Typical UV-vis absorption spectrum of synthesized graphene oxide in solution; (b) Photoluminescence spectra of graphene Oxide film at room temperature.

Fig. 5
Fig. 5

(a) I-V characteristics of GO/n-Si heterojunction device under dark condition and on illumination of white light. The rectification characteristics of the diode using ac input signal (b) 50 Hz, (c) 1 MHz.

Fig. 6
Fig. 6

(a) I-V characteristics of the heterojunction using 325 nm laser with different illuminated powers; (b) The fitted plot of photocurrent as a function of illuminated power at −2 V.

Fig. 7
Fig. 7

Broadband spectral responsivity of GO/n-Si heterojunction diode at different bias voltages. The photocurrent of the junction in UV wavelength range is shown in the inset.

Fig. 8
Fig. 8

Schematic band diagram of GO/n-Si heterojunction at reverse bias.

Fig. 9
Fig. 9

Switching characteristics of GO/n-Si heterojunction photodiode under 514 nm excitation for (a) different bias voltages (b) different illuminated powers.

Fig. 10
Fig. 10

The time response of photocurrent (a) rise and (b) decay for GO/n-Si junction in response the incident UV illumination (325 nm). The open circles are the experimental points and the solid lines are a fit to the equations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I p h = A P m
I(t)= I 0 + A 0 [exp(t/ t 1 )],
I(t)= I 0 + A 0 [exp(t/ t 1 )],
BW= 0.35 t r ,

Metrics