Abstract

The characteristics of a barium tungstate (BaWO4) anti-Stokes Raman laser at 968 nm are studied theoretically and experimentally. The BaWO4 Raman resonator is pumped by a Q-switched Nd:YAG laser at 1064 nm with its axis tilted from the pumping laser axis. The non-collinear phase matching for the generation of the first anti-Stokes wave in the same BaWO4 crystal is achieved. The output energy, temporal and spectral informations are investigated. At a pumping laser energy of 128 mJ, the anti-Stokes laser energy obtained is 2.2 mJ. The second Stokes radiation at 1324 nm as well as the first and the third Stokes waves at 1180 nm and 1509 nm is also generated at the same time. The maximum total Stokes energy output is 42.5 mJ. In the theory, the anti-Stokes laser intensity expression as a function of the pumping and the first Stokes laser intensities for the extracavity anti-Stokes Raman laser is deduced. The properties of the anti-Stokes Raman laser are simulated theoretically by solving the rate equations of the extracavity Raman laser and using the derived expression. The theoretical results are in good agreement with the experimental results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron.27(1), 3–56 (2003).
    [CrossRef]
  2. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
    [CrossRef]
  3. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express16(26), 21958–21963 (2008).
    [CrossRef] [PubMed]
  4. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
    [CrossRef]
  5. H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
    [CrossRef]
  6. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett.30(24), 3335–3337 (2005).
    [CrossRef] [PubMed]
  7. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  8. Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, “Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power,” Opt. Express18(12), 12111–12118 (2010).
    [CrossRef] [PubMed]
  9. A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express18(6), 5984–5992 (2010).
    [CrossRef] [PubMed]
  10. P. Erný and H. Jelínková, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal,” Opt. Lett.27(5), 360–362 (2002).
    [CrossRef] [PubMed]
  11. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, “Highly efficient 1.3-microm second-stokes PbWO4 Raman laser,” Opt. Lett.28(6), 426–428 (2003).
    [CrossRef] [PubMed]
  12. A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, “Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-microm spectral region by use of a KGd(WO4)2 crystal,” Opt. Lett.30(4), 421–423 (2005).
    [CrossRef] [PubMed]
  13. Y. T. Chang, K. W. Su, H. L. Chang, and Y. F. Chen, “Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium,” Opt. Express17(6), 4330–4335 (2009).
    [CrossRef] [PubMed]
  14. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
    [CrossRef]
  15. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
    [CrossRef]
  16. S. P. S. Porto and J. F. Scott, “Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,” Phys. Rev.157(3), 716–719 (1967).
    [CrossRef]
  17. A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
    [CrossRef]
  18. R. P. Mildren, D. W. Coutts, and D. J. Spence, “All-solid-state parametric Raman anti-Stokes laser at 508 nm,” Opt. Express17(2), 810–818 (2009).
    [CrossRef] [PubMed]
  19. P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
    [CrossRef]
  20. W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
    [CrossRef]
  21. R. W. Boyd, Nonlinear Optics 3rd ed. (Elsevier Inc., 2008).
  22. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons Inc., 1984).
  23. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
    [CrossRef]
  24. G. F. Bakhshieva and A. M. Morozov, “Refractive-Indexes of molybdate and tungstate single-crystals having scheelite structure,” Sov. J. Opt. Technol.44, 542–543 (1977).

2010

2009

2008

2006

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

2005

A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, and A. I. Ferguson, “Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-microm spectral region by use of a KGd(WO4)2 crystal,” Opt. Lett.30(4), 421–423 (2005).
[CrossRef] [PubMed]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett.30(24), 3335–3337 (2005).
[CrossRef] [PubMed]

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

2004

A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
[CrossRef]

2003

2002

2000

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

1999

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

1997

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

1977

G. F. Bakhshieva and A. M. Morozov, “Refractive-Indexes of molybdate and tungstate single-crystals having scheelite structure,” Sov. J. Opt. Technol.44, 542–543 (1977).

1970

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
[CrossRef]

1967

S. P. S. Porto and J. F. Scott, “Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,” Phys. Rev.157(3), 716–719 (1967).
[CrossRef]

Aitchison, J. S.

Bakhshieva, G. F.

G. F. Bakhshieva and A. M. Morozov, “Refractive-Indexes of molybdate and tungstate single-crystals having scheelite structure,” Sov. J. Opt. Technol.44, 542–543 (1977).

Basiev, T. T.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Chang, H. L.

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Chang, Y. T.

Chen, X. H.

Chen, Y. F.

Cheng, X. F.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Clements, W. R. L.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
[CrossRef]

Cong, Z. H.

Coutts, D. W.

Dekker, P.

Demidovich, A. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Ding, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Eichler, H. J.

Erný, P.

Fan, L.

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Fan, S. Z.

Fan, Y. X.

Ferguson, A. I.

Gad, G. M. A.

Ge, W. W.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Grabtchikov, A. S.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Grasiuk, A. Z.

A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
[CrossRef]

Hakuta, K.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

Hu, X. B.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Ivleva, L. I.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Jelinkova, H.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

Jelínková, H.

Jiang, M. H.

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett.30(24), 3335–3337 (2005).
[CrossRef] [PubMed]

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Kaminskii, A. A.

Katsuragawa, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

Kravtsov, S. V.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

Kurbasov, S. V.

A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
[CrossRef]

Kuzmin, A. N.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Langford, N.

Lee, A. J.

Li, H. X.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Li, J. Z.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Li, S. T.

Li, Y. Q.

Lisinetskii, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Liu, J. H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Liu, Y.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Liu, Z. J.

Losev, L. L.

A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
[CrossRef]

Major, A.

McQuillan, A. K.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
[CrossRef]

Mildren, R. P.

Morozov, A. M.

G. F. Bakhshieva and A. M. Morozov, “Refractive-Indexes of molybdate and tungstate single-crystals having scheelite structure,” Sov. J. Opt. Technol.44, 542–543 (1977).

Orlovich, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Osiko, V. V.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Pask, H. M.

Piper, J. A.

Polozkov, N. M.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

Porto, S. P. S.

S. P. S. Porto and J. F. Scott, “Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,” Phys. Rev.157(3), 716–719 (1967).
[CrossRef]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Ryabtsev, G. I.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

Scott, J. F.

S. P. S. Porto and J. F. Scott, “Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,” Phys. Rev.157(3), 716–719 (1967).
[CrossRef]

Skornyakov, V. V.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

Smith, P. W. E.

Sobol, A. A.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Spence, D. J.

Stoicheff, B. P.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
[CrossRef]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Su, K. W.

Sulc, J.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

Suzuki, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

Tao, X. T.

Wang, H. T.

Wang, J.

Wang, J. Y.

Wang, Q.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Wang, Q. P.

Wang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Xu, H. Y.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Xu, X. G.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Zhang, H. J.

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Zhang, X. L.

Zhang, X. Y.

Zverev, P. G.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Appl. Phys. B

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B85(1), 89–95 (2006).
[CrossRef]

Appl. Phys. Lett.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett.75(24), 3742–3744 (1999).
[CrossRef]

J. Cryst. Growth

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005).
[CrossRef]

Laser Phys. Lett.

H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, “Stimulated Raman scattering in Nd:SrWO4,” Laser Phys. Lett.2(1), 4–11 (2005).
[CrossRef]

Opt. Commun.

A. Z. Grasiuk, S. V. Kurbasov, and L. L. Losev, “Picosecond parametric Raman laser based on KGd(WO4)2 crystal,” Opt. Commun.240(4-6), 239–244 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater.11(4), 307–314 (1999).
[CrossRef]

Phys. Rev.

S. P. S. Porto and J. F. Scott, “Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4,” Phys. Rev.157(3), 716–719 (1967).
[CrossRef]

Phys. Rev. A

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman Emission in Diamond: Spectrum, Gain, and Angular Distribution of Intensity,” Phys. Rev. A1(3), 628–635 (1970).
[CrossRef]

Phys. Rev. Lett.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-stokes stimulated Raman scattering,” Phys. Rev. Lett.79(2), 209–212 (1997).
[CrossRef]

Prog. Quantum Electron.

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron.27(1), 3–56 (2003).
[CrossRef]

Quantum Electron.

P. G. Zverev, T. T. Basiev, A. A. Sobol, V. V. Skornyakov, L. I. Ivleva, N. M. Polozkov, and V. V. Osiko, “Stimulated Raman scattering in alkaline-earth tungstate crystals,” Quantum Electron.30(1), 55–59 (2000).
[CrossRef]

Sov. J. Opt. Technol.

G. F. Bakhshieva and A. M. Morozov, “Refractive-Indexes of molybdate and tungstate single-crystals having scheelite structure,” Sov. J. Opt. Technol.44, 542–543 (1977).

Other

R. W. Boyd, Nonlinear Optics 3rd ed. (Elsevier Inc., 2008).

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons Inc., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the pulsed BaWO4 anti-Stokes Raman laser.

Fig. 2
Fig. 2

Diagram of phase-matching condition.

Fig. 3
Fig. 3

Transmission curves of the cavity mirrors.

Fig. 4
Fig. 4

Output laser spectral information.

Fig. 5
Fig. 5

Anti-Stokes output energies as functions of the pumping laser energy.

Fig. 6
Fig. 6

Stokes output energies as functions of the pumping laser energy.

Fig. 7
Fig. 7

Oscilloscope traces of the pumping, the depleted pumping, the first Stokes and the first anti-Stokes laser pulses.

Fig. 8
Fig. 8

Numerically calculated traces of the pumping, the depleted pumping, the first Stokes and the first anti-Stokes laser pulses.

Tables (3)

Tables Icon

Table 1 Parameter comparisons of the output beams between the calculated and the experimental values.

Tables Icon

Table 2 The parameters for the theoretical calculation.

Tables Icon

Table 3 The ratio of the anti-Stokes decrease due to the Raman conversion to the anti-Stokes increase due to the FWM process for different pumping energies.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d A AS (z) dz = i ω AS 2 n AS c ε 0 P( ω AS ) e i k AS z ,
P( ω AS )=6 ε 0 χ R ( ω AS )| A L (z) | 2 A AS (z) e i k AS z +3 ε 0 χ F ( ω AS ) A L 2 (z) A S1 e i(2 k L k S1 )z ,
2 χ R ( ω S1 )= χ F ( ω AS ) , χ R ( ω S1 )= χ R ( ω AS ) .
d A AS (z) dz =i 3 ω AS n AS c χ R ( ω S1 ) | A L (z) | 2 A AS (z)+i 3 ω AS n AS c χ R ( ω S1 ) A L 2 (z) A S1 exp(iΔkz).
g R = 12 ω S1 ε 0 c 2 n L n S1 χ R ( ω S1 ),
χ R ( ω S1 )=i χ R ( ω S1 ).
A AS (z)= 0 z i 3 ω AS c n AS χ R ( ω S1 ) A L 2 (z) A S1 dz,
A AS (z) = 0 z i 3 ω AS c n AS χ R ( ω S1 ) [ A L (z) ] 2 A S1 dz.
I AS (z)= 1 2 n AS ε 0 μ 0 A AS (z) A AS (z) = 1 2 n AS ε 0 μ 0 0 z i 3 ω AS c n AS χ R ( ω S1 ) A L 2 (z) A S1 dz 0 z i 3 ω AS c n AS χ R ( ω S1 ) [ A L (z) ] 2 A S1 dz = 9 ω AS 2 | χ R ( ω S1 ) | 2 n AS n S1 c 2 I S1 | FWM 0 z A L 2 (z) dz 0 z [ A L (z) ] 2 dz,
d A L (z) dz =i 3 ω L n L c [ χ R ( ω S1 ) | A S1 | 2 A L (z)+ χ R ( ω AS ) | A AS (z) | 2 A L (z) ] +i 3 ω L 2 n L c [ χ F ( ω AS )+ χ F ( ω AS ) ] A AS (z) A S1 A L (z) e iΔkz .
d A L (z) dz =i 3 ω L n L c χ R ( ω S1 ) | A S1 | 2 A L (z).
A L (z)= A L0 exp( i 3 ω L n L c χ R ( ω S1 ) | A S1 | 2 z )= A L0 exp( 1 2 ω L ω S1 g R I S1 z ),
A L (z) = A L0 exp( i 3 ω L n L c χ R ( ω S1 )| A S1 | 2 z )= A L0 exp( 1 2 ω L ω S1 g R I S1 z ),
I AS (z)= 72 π 2 | χ R ( ω S1 ) | 2 n L 2 n AS n S1 c 2 ε 0 2 λ AS 2 I L0 2 I S1 [ 1exp( g 0 I S1 z ) g 0 I S1 ] 2 ,
η= 72 π 2 | χ R ( ω S1 ) | 2 n L 2 n AS n S1 c 2 ε 0 2 λ AS 2 .
η= g 0 2 n S1 λ L 2 8 n AS λ AS 2 .
I AS (t)=η I L0 2 (t) I S1 (t) { 1exp[ g 0 I S1 (t) l R ] g 0 I S1 (t) } 2 .
d I S1 (t) dt = 2 υ S1 υ L t r I L0 (t)[ 1 e g 0 I S1 (t) l R ] I S1 (t) t r [ 2 g 1 l R I S2 (t)+ln( 1 R 11 R 12 )+L ] + k sp I L0 (t),
d I S2 (t) dt = I S2 (t) t r { 2 l R [ g 2 I S1 (t) g 3 I S3 (t) ]ln( 1 R 21 R 22 )L }+ k sp I S1 (t),
d I S3 (t) dt = I S3 (t) t r [ 2 g 3 l R I S2 (t)ln( 1 R 31 R 32 )L ]+ k sp I S2 (t),
E AS =(1 R AS ) 0 I AS (t) dSdt =(1 R AS )η S o 0 I L0 2 (t) I S1 (t) { 1exp[ g 0 I S1 (t) l R ] g 0 I S1 (t) } 2 dt,
E Sj = 1 2 ln( 1 R j1 ) 0 I Sj (t) dSdt= 1 2 ln( 1 R j1 ) S S 0 I Sj (t) dt,j=1, 2, 3
r = 0 l R | | A L ( z ) | 2 A A S ( z ) | d z 0 l R | A L 2 ( z ) A S 1 | d z 0 l R I L ( z ) I A S ( z ) d z 0 l R I L ( z ) I S 1 d z ,

Metrics