Abstract

Continuous-wave (cw) blue laser generation at 426 nm by frequency doubling with a monolithic periodically poled KTP (PPKTP) cavity is reported in this paper. Without any free mirrors, the standing-wave cavity solely consists of a monolithic PPKTP crystal, and both ends of which are spherically polished and mirror-coated. An output power of 158 mW is obtained when the pump power is 350 mW. The conversion efficiency is 45%. The dependence of the conversion efficiency on the temperature and the incident fundamental power has been discussed. Such a system is integrally stable and compact for long-time operation under temperature control. The system is much more stable than the usual servo lock system for external cavity doubling.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
    [CrossRef] [PubMed]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
    [CrossRef] [PubMed]
  3. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000).
    [CrossRef] [PubMed]
  4. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
    [CrossRef]
  5. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
    [CrossRef]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
    [CrossRef] [PubMed]
  7. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999).
    [CrossRef]
  8. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
    [CrossRef]
  9. J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
    [CrossRef]
  10. Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
    [CrossRef]
  11. F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
    [CrossRef] [PubMed]
  12. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
    [CrossRef] [PubMed]
  13. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express17(5), 3777–3781 (2009).
    [CrossRef] [PubMed]
  14. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
    [CrossRef] [PubMed]
  15. D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).
  16. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett.16(18), 1400–1402 (1991).
    [CrossRef] [PubMed]
  17. B. G. Klappauf, Y. Bidel, D. Wilkowski, T. Chanelière, and R. Kaiser, “Detailed study of an efficient blue laser source by second-harmonic generation in a semimonolithic cavity for the cooling of strontium atoms,” Appl. Opt.43(12), 2510–2527 (2004).
    [CrossRef] [PubMed]
  18. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B24(3), 576–580 (2007).
    [CrossRef]
  19. K. Danekar, A. Khademian, and D. Shiner, “Blue laser via IR resonant doubling with 71% fiber to fiber efficiency,” Opt. Lett.36(15), 2940–2942 (2011).
    [CrossRef] [PubMed]
  20. H. Lei, T. Liu, L. Li, S. Yan, J. Wang, and T. Zhang, “CW blue light generation at 429 nm by utilizing second harmonic process with KNbO3,” Chin. Opt. Lett.1, 177–179 (2003).
  21. X. Song, Z. Li, P. Zhang, G. Li, Y. Zhang, J. Wang, and T. Zhang, “Frequency doubling with periodically poled KTP at the fundamental wave of cesium D2 transition,” Chin. Opt. Lett.5, 596–598 (2007).
  22. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
    [CrossRef]
  23. R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
    [CrossRef]
  24. F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003).
    [CrossRef]
  25. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt.45(29), 7628–7631 (2006).
    [CrossRef] [PubMed]

2011

2010

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).

2009

2008

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

2007

2006

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt.45(29), 7628–7631 (2006).
[CrossRef] [PubMed]

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

2005

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
[CrossRef]

2004

2003

H. Lei, T. Liu, L. Li, S. Yan, J. Wang, and T. Zhang, “CW blue light generation at 429 nm by utilizing second harmonic process with KNbO3,” Chin. Opt. Lett.1, 177–179 (2003).

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003).
[CrossRef]

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

2000

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000).
[CrossRef] [PubMed]

1999

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999).
[CrossRef]

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

1998

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

1992

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
[CrossRef] [PubMed]

1991

1988

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

Beduini, F. A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Bidel, Y.

Bramati, A.

Burks, S.

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
[CrossRef] [PubMed]

Cerè, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Chanelière, T.

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Chiummo, A.

Chou, C. W.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Danekar, K.

Danzmann, K.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Ditlbacher, H.

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Furusawa, A.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

Georgiades, N. Ph.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

Giacobino, E.

Goh, K. W.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Gossler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Guo, Y.

D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Hald, J.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

Hood, C. J.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

Jia, X.

Kaiser, R.

Kannari, F.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

Khademian, A.

Kimble, H. J.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
[CrossRef] [PubMed]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett.16(18), 1400–1402 (1991).
[CrossRef] [PubMed]

Klappauf, B. G.

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

Koschorreck, M.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Lamprecht, B.

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Lastzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Laurat, J.

Le Targat, R.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
[CrossRef]

Lei, H.

Leitner, A.

Lemonde, P.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
[CrossRef]

Li, G.

Li, L.

Li, Y.

Li, Z.

D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).

X. Song, Z. Li, P. Zhang, G. Li, Y. Zhang, J. Wang, and T. Zhang, “Frequency doubling with periodically poled KTP at the fundamental wave of cesium D2 transition,” Chin. Opt. Lett.5, 596–598 (2007).

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, T.

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

Lodahl, P.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999).
[CrossRef]

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

Mehmet, M.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Mitchell, M. W.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Mølmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Ortalo, J.

Ou, Z. Y.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999).
[CrossRef]

Parkins, A. S.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
[CrossRef] [PubMed]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett.16(18), 1400–1402 (1991).
[CrossRef] [PubMed]

Predojevic, A.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Riis, E.

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003).
[CrossRef]

Sasaki, M.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

Schnabel, R.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Schori, C.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

Shiner, D.

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

Song, X.

Sørensen, J. L.

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

Suzuki, S.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

Torabi-Goudarzi, F.

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003).
[CrossRef]

Turchette, Q. A.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

Villa, F.

Wang, J.

Wang, X.

Wilkowski, D.

Wolfgramm, F.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

Yan, S.

Yonezawa, H.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

Zhang, J.

Zhang, P.

Zhang, T.

Zhang, T. C.

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Zhang, Y.

Zhao, D.

D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).

Zondy, J.-J.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
[CrossRef]

Acta Phys. Sin.

D. Zhao, Z. Li, Y. Guo, G. Li, J. Wang, and T. Zhang, “Photon statistics of squeezed vacuum field from optical parametric oscillator far below the threshold,” Acta Phys. Sin.59, 6231–6236 (2010).

Appl. Opt.

Appl. Phys. Lett.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett.89(6), 061116 (2006).
[CrossRef]

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000).
[CrossRef]

Chin. Opt. Lett.

IEEE J. Quantum Electron.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron.24(6), 913–919 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun.247(4-6), 481–488 (2005).
[CrossRef]

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun.227(4-6), 389–403 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A67(3), 033802 (2003).
[CrossRef]

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A58(5), 4056–4077 (1998).
[CrossRef]

Phys. Rev. Lett.

F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, and M. W. Mitchell, “Squeezed-light optical magnetometry,” Phys. Rev. Lett.105(5), 053601 (2010).
[CrossRef] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett.100(9), 093602 (2008).
[CrossRef] [PubMed]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett.100(3), 033602 (2008).
[CrossRef] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett.97(8), 083604 (2006).
[CrossRef] [PubMed]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett.83(13), 2556–2559 (1999).
[CrossRef]

J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett.83(7), 1319–1322 (1999).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett.68(20), 3020–3023 (1992).
[CrossRef] [PubMed]

Science

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science282(5391), 1089–1094 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. OI: isolator; HWP: half-wave plate; PBS: polarizing beam splitter; L1: mode-matching lens, f = 80 mm.

Fig. 2
Fig. 2

The monolithic PPKTP crystal.

Fig. 3
Fig. 3

Output blue power at 426 nm versus temperature. The input fundamental power is 70 mW.

Fig. 4
Fig. 4

Total conversion efficiency and second harmonic power versus fundamental power. Solid lines represent the theoretical results based on parameters of the system (ENL = 0.75%W−1, L = 2.9%, Гabs = 0.08 ENL) and the solid rhombuses are experimental results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = 4 T 1 E NL P 1 [ 2 1 T 1 ( 2LΓ η P 1 E NL ) ]

Metrics