Abstract

High-linearity modified uni-traveling carrier photodiodes on silicon-on-insulator with low AM-to-PM conversion factor are demonstrated. The devices deliver more than 2.5 dBm RF output power up to 40 GHz and have an output third order intercept point of 30 dBm at 20 GHz. Photodiode arrays exceed a saturation current-bandwidth-product of 630 mA·GHz and reach unsaturated RF output power levels of 10 dBm at 20 GHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
    [CrossRef]
  2. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
    [CrossRef]
  3. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
    [CrossRef] [PubMed]
  4. G. Fish, “Heterogeneous photonic integration for microwave photonic applications,” in Tech. Digest Optical Fiber Commun. OFC 2013 (Optical Society of America, 2013), paper OW3D.5.
  5. H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express17(22), 20221–20226 (2009).
    [CrossRef] [PubMed]
  6. H. Pan, Y. Fu, Z. Li, and J. C. Campbell, “High-linearity modified uni-traveling carrier photodiodes,” in Tech. Digest Optical Fiber Commun. OFC 2010 (Optical Society of America, 2010), paper OWN1.
  7. A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on silicon-on-insulator,” in Tech. Digest Optical Fiber Commun. OFC 2013 (Optical Society of America, 2013), paper OM2J.
  8. J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides – applications to tunable bragg filters,” IEEE J. Quantum Electron.30(8), 1801–1816 (1994).
    [CrossRef]
  9. B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE Journal of Quant. Electronics 26(1), 113–122 (1990).
  10. A. Beling, Y. Fu, Z. Li, H. Pan, Q. Zhou, A. Cross, M. Piels, J. Peters, J. E. Bowers, and J. C. Campbell, “Modified Uni-Traveling Carrier Photodiodes Heterogeneously Integrated on Silicon-on-Insulator (SOI),” in Conference on Integrated Photonics Research and Silicon Nanophotonics IPR 2012 (Optical Society of America, 2012), paper IM2A.2.
    [CrossRef]
  11. M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express21(13), 15634–15644 (2013).
    [CrossRef] [PubMed]
  12. T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. C. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett.38(10), 1712–1714 (2013).
    [CrossRef] [PubMed]
  13. Data sheet XPDV2020, www.u2t.de .
  14. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
    [CrossRef]

2013

2011

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

2010

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

2009

2007

1994

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides – applications to tunable bragg filters,” IEEE J. Quantum Electron.30(8), 1801–1816 (1994).
[CrossRef]

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Beling, A.

Bovington, J.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Bowers, J. E.

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express21(13), 15634–15644 (2013).
[CrossRef] [PubMed]

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Campbell, J. C.

Chen, H.-W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Cohen, O.

Datta, S.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Diddams, S.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Diddams, S. A.

Fang, A. W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Fortier, T. M.

Fu, Y.

Hati, A.

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. C. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett.38(10), 1712–1714 (2013).
[CrossRef] [PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Jacob-Mitos, M.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Jones, R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Joshi, A.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Koch, B. R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Li, Z.

Liang, D.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Liao, L.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Nelson, C.

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. C. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett.38(10), 1712–1714 (2013).
[CrossRef] [PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Pan, H.

Paniccia, M. J.

Park, H.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Piels, M.

Quinlan, F.

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. C. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett.38(10), 1712–1714 (2013).
[CrossRef] [PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Raday, O.

Ramaswamy, A.

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Sysak, M. N.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Tang, Y.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

Taylor, J.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Taylor, J. A.

Weber, J.-P.

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides – applications to tunable bragg filters,” IEEE J. Quantum Electron.30(8), 1801–1816 (1994).
[CrossRef]

Wong, K.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

IEEE J. Quantum Electron.

J.-P. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides – applications to tunable bragg filters,” IEEE J. Quantum Electron.30(8), 1801–1816 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron.17(3), 671–688 (2011).
[CrossRef]

IEEE Photonics Journal

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photonics Journal3(1), 140–151 (2011).
[CrossRef]

Materials

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Data sheet XPDV2020, www.u2t.de .

B. R. Bennett, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE Journal of Quant. Electronics 26(1), 113–122 (1990).

A. Beling, Y. Fu, Z. Li, H. Pan, Q. Zhou, A. Cross, M. Piels, J. Peters, J. E. Bowers, and J. C. Campbell, “Modified Uni-Traveling Carrier Photodiodes Heterogeneously Integrated on Silicon-on-Insulator (SOI),” in Conference on Integrated Photonics Research and Silicon Nanophotonics IPR 2012 (Optical Society of America, 2012), paper IM2A.2.
[CrossRef]

H. Pan, Y. Fu, Z. Li, and J. C. Campbell, “High-linearity modified uni-traveling carrier photodiodes,” in Tech. Digest Optical Fiber Commun. OFC 2010 (Optical Society of America, 2010), paper OWN1.

A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on silicon-on-insulator,” in Tech. Digest Optical Fiber Commun. OFC 2013 (Optical Society of America, 2013), paper OM2J.

G. Fish, “Heterogeneous photonic integration for microwave photonic applications,” in Tech. Digest Optical Fiber Commun. OFC 2013 (Optical Society of America, 2013), paper OW3D.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layer stack design of MUTC PD on SOI. Doping concentrations in cm−3.

Fig. 2
Fig. 2

(a) Calibrated frequency responses of 25 µm, 50 µm, and 100 µm-long waveguide MUTC PDs measured at 5 V bias voltage. (b) Each data point corresponds to a measured device. Line: calculated RC-limited bandwidth using the measured capacitances and series resistances. Inset: Micrograph of fabricated 100-µm long MUTC PD.

Fig. 3
Fig. 3

RF output power (a) and RF compression (b) at 40 GHz.

Fig. 4
Fig. 4

(a) Relative optical intensity profile in the plane of the absorber. The active PD area extends from x = −7 to 7 and z = 0 to 100. The tapered silicon waveguide extends from z = 0 to −50. (b) Saturation current measured at the 3 dB bandwidth normalized to PD active area as a function of PD length. All WG PDs are 14-µm wide. The dashed lines indicate the upper limits and were measured on a 700-µm2 back-illuminated PD.

Fig. 5
Fig. 5

(a) IP3 vs. average photocurrent. (b) AM-to-PM conversion factor. Solid lines: 14x50 µm2 PD measured at 6 V, symbols: commercial InP WG PD measured at 3 V.

Fig. 6
Fig. 6

2-element PD array: PDs with RF pads (a), simulated intensity distribution in multi-mode waveguide (b) with PD locations being circled. (c) 4-element PD array.

Fig. 7
Fig. 7

(a) Frequency responses and (b) RF output power at 20 GHz and 5 V from 2- and 4-element PD arrays.

Tables (1)

Tables Icon

Table 1 Performance of waveguide MUTC PDs

Metrics