Abstract

A fully fiberized, single-polarization, gain-switched diode-seeded fiber master oscillator power amplifier (MOPA) system is demonstrated delivering 28ps pulses at variable repetition frequencies ranging from 53 MHz up to 858 MHz. An average signal output power of 200 W was achieved with good OSNR for all operating frequencies. A maximum pulse energy of 3.23 μJ at a repetition frequency of 53 MHz was achieved, corresponding to a pulse peak power of 107 kW. The extraction of higher pulse energy was limited primarily by the onset of nonlinear effects such as SRS which lead to compromised pulse quality at higher peak powers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
    [CrossRef] [PubMed]
  2. J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
    [CrossRef]
  3. F. Kienle, P. S. Teh, D. Lin, S. U. Alam, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator,” Opt. Express20(7), 7008–7014 (2012).
    [CrossRef] [PubMed]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  5. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
    [CrossRef]
  6. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  7. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011).
    [CrossRef] [PubMed]
  8. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “157 W all-fiber high-power picosecond laser,” Appl. Opt.51(13), 2497–2500 (2012).
    [CrossRef] [PubMed]
  9. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
    [CrossRef]
  10. G. Agrawal, “Nonlinear Fiber Optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer Berlin Heidelberg, 2000), pp. 195–211.
  11. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express19(3), 1854–1859 (2011).
    [CrossRef] [PubMed]
  12. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
    [CrossRef]
  13. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express15(23), 15402–15409 (2007).
    [CrossRef] [PubMed]
  14. P. S. Teh, S.-u. Alam, H.-Y. Chan, D. P. Shepherd, and D. J. Richardson, “Generation of transform-limited picosecond pulses at 1.0µm from a gain switched semiconductor laser diode,” presented at the 4th IEEE International Conference on Photonics 2013, Malaysia, 28–30 Oct. 2013.
  15. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  17. S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers,” J. Opt. Soc. Am. B2(8), 1318–1319 (1985).
    [CrossRef]
  18. K. K. Chen, J. H. V. Price, S. U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing µJ pulses tunable in duration from 1 to 21 ps,” Opt. Express18(14), 14385–14394 (2010).
    [CrossRef] [PubMed]

2012

2011

2010

2009

2007

2006

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

2005

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

2004

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

1995

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

1985

Alam, S. U.

Ancona, A.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Chen, K. K.

Chen, S.

Clarkson, W. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Dearden, G.

J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
[CrossRef]

Dong, J.

Döring, S.

Dupriez, P.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Edwardson, S. P.

J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
[CrossRef]

Fan, Y.

Frede, M.

Griffiths, J.

J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
[CrossRef]

Hanna, D. C.

F. Kienle, P. S. Teh, D. Lin, S. U. Alam, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator,” Opt. Express20(7), 7008–7014 (2012).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Hayes, J. R.

He, B.

Hickey, L. M. B.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Hou, J.

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Jauregui, C.

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

Kanzelmeyer, S.

Kienle, F.

Kracht, D.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Limpert, J.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Lin, D.

Liu, H.

Lou, Q.

Lu, Q.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Malinowski, A.

K. K. Chen, J. H. V. Price, S. U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing µJ pulses tunable in duration from 1 to 21 ps,” Opt. Express18(14), 14385–14394 (2010).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Neumann, J.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Nolte, S.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Payne, D.

Pinault, S. C.

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Potasek, M. J.

Price, J. H. V.

Richardson, D. J.

Röser, F.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Sahu, J.

Sahu, J. K.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Sayinc, H.

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Shepherd, D. P.

Song, R.

Teh, P. S.

Theeg, T.

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Tünnermann, A.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Watkins, K. G.

J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
[CrossRef]

Wei, Y.

Wielandy, S.

Yang, W.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

Zheng, J.

Zhou, J.

Appl. Opt.

Appl. Surf. Sci.

J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012).
[CrossRef]

IEEE J. Quantum Electron.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. At. Mol. Opt. Phys.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. S. Teh, S.-u. Alam, H.-Y. Chan, D. P. Shepherd, and D. J. Richardson, “Generation of transform-limited picosecond pulses at 1.0µm from a gain switched semiconductor laser diode,” presented at the 4th IEEE International Conference on Photonics 2013, Malaysia, 28–30 Oct. 2013.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

G. Agrawal, “Nonlinear Fiber Optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer Berlin Heidelberg, 2000), pp. 195–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fully fiberized picosecond seed laser based YDFA MOPA system incorporating 4 amplifier stages.

Fig. 2
Fig. 2

(a) Pulse shape of the seed (black line) and output (red dash line) of the third preamplifier, when operating at a repetition frequency of 214 MHz, (inset) impulse response of the photodetector and (b) output spectra after various amplification stages.

Fig. 3
Fig. 3

Average signal output power vs. launched pump power of the power stage amplifier.

Fig. 4
Fig. 4

(a) Spectra measured at various repetition frequencies at an average output power of 200W and an input signal power of 2.6 W. Note that the average output power at 53 MHz was 108 W, (b) the spectral profiles after the third preamplifier stage (solid lines) as well as the output of the MOPA at 113 W and 171 W of average powers for 1.4 W of input signal power at a repetition frequency of 53 MHz and (c) evidence of pulse width broadening at the highest operating peak power.

Fig. 5
Fig. 5

(a) Signal linewidth measured (−10dB) at different signal output powers across all repetition frequencies and (b) SPM effect on signal linewidth at various output average powers with repetition frequency of 53 MHz. In all cases, OSA resolution was set at 0.1 nm.

Metrics