Abstract

A class of folded ordered plasmonic dipole nanoresonators based on insulator-metal-insulator (IMI) slab waveguides is proposed and studied. This work is motivated by the development of a novel fabrication process that avoids the need for direct write nanolithography and instead relies on accessible UV lithography and other top-down parallel fabrication techniques that result in metallic dolmen structures with nanometre sized gaps. In this context, the dolmen geometry consists of two vertical segments supporting a flat horizontal slab. It is shown using frequency domain finite element analysis that such structures, which are essentially folded dipole antennas, resonate in a similar manner to their linear unfolded counterparts. The effect of the likely fabrication features is also studied.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007).
  2. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006), Vol. 4.
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
    [CrossRef]
  5. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
    [CrossRef] [PubMed]
  6. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
    [CrossRef]
  7. M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003).
    [CrossRef]
  8. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
    [CrossRef] [PubMed]
  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  10. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
    [CrossRef] [PubMed]
  11. R. R. A. Syms, “Sub-micron structuring at mesa edges,” Microelectron. Eng.73–74, 295–300 (2004).
    [CrossRef]
  12. Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
    [CrossRef]
  13. T. A. Milligan, Modern Antenna Design (Wiley-IEEE Press, 2005).
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
    [CrossRef] [PubMed]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express15(7), 4198–4204 (2007).
    [CrossRef] [PubMed]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  17. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
    [CrossRef]
  18. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007).
    [CrossRef]
  19. Comsol Multiphysics, Available: http://www.comsol.com/
  20. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  22. T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
    [CrossRef] [PubMed]
  23. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
    [CrossRef] [PubMed]

2013 (2)

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

2012 (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

2009 (3)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

2007 (4)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007).
[CrossRef]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

2004 (1)

R. R. A. Syms, “Sub-micron structuring at mesa edges,” Microelectron. Eng.73–74, 295–300 (2004).
[CrossRef]

2003 (2)

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003).
[CrossRef]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

1983 (1)

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Alexander, R. W.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Bokor, J.

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Bozhevolnyi, S.

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007).
[CrossRef]

Bozhevolnyi, S. I.

Chan, G. H.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

Choi, Y.-K.

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Ekinci, Y.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

García-Parajó, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Green, M.

M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003).
[CrossRef]

Grunes, J.

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hasan, W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Henzie, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Hicks, E. M.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Lee, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Lee, M. H.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Liu, F. M.

M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003).
[CrossRef]

Long, L. L.

Martin, O. J. F.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Odom, T. W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Oh, S. H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Siegfried, T.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

Sigg, H.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

Somorjai, G. A.

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007).
[CrossRef]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Syms, R. R. A.

R. R. A. Syms, “Sub-micron structuring at mesa edges,” Microelectron. Eng.73–74, 295–300 (2004).
[CrossRef]

Van Duyne, R. P.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Ward, C. A.

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

Zhu, J.

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Engineering metal adhesion layers that do not deteriorate plasmon resonances,” ACS Nano7(3), 2751–2757 (2013).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem.60(1), 147–165 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Phys. Chem. B (2)

M. Green and F. M. Liu, “SERS substrates fabricated by island lithography: the silver/pyridine system,” J. Phys. Chem. B107(47), 13015–13021 (2003).
[CrossRef]

Y.-K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai, “Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography,” J. Phys. Chem. B107(15), 3340–3343 (2003).
[CrossRef]

Microelectron. Eng. (1)

R. R. A. Syms, “Sub-micron structuring at mesa edges,” Microelectron. Eng.73–74, 295–300 (2004).
[CrossRef]

Nano Lett. (2)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett.7(7), 1947–1952 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8(7), 512–516 (2013).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (1)

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B75(7), 073402–073406 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Other (5)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006), Vol. 4.

Comsol Multiphysics, Available: http://www.comsol.com/

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

T. A. Milligan, Modern Antenna Design (Wiley-IEEE Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Illustration of nano gaps formed by ion beam etching at mesa edges. b) Proposed process flow exploiting sidewall processing to generate nano-mesa for ion beam edge structuring.

Fig. 2
Fig. 2

a) Folded dipole antenna and its resonance as a function of LSPP at b) different feed gaps, g and at c) different fold angles, θ.

Fig. 3
Fig. 3

a) |Emax/E0| as a function of LSPP for different feed gaps and excitations. E-field map for b) m = 1 and c) m = 2 at oblique incidence for g = 2.5 nm. d) |E/E0| on the metal highlighting the two modes. The x-axis is normalised to the respective value of L. In b) and c), the upper limit of the colour scale is restricted to 10 for clarity; |E/E0| values much greater than 10 are in fact obtained.

Fig. 4
Fig. 4

a) Illustration of a three segment folded dipole with two feed gaps. The two outer arms are folded by an angle θ. b) Resonances of the three segment dipole at different fold angles, θ, and at normal or oblique incidence.

Fig. 5
Fig. 5

a) The geometries derived from the 3 segment resonator and b) their resonances. The dashed lines (–) in a) correspond to the central axis of the metal.

Fig. 6
Fig. 6

E-field enhancement map and standing wave profile of the three segment resonator for a) equilateral dolmen resonator with L = 82.5 nm, b) wide dolmen with L = 270 nm, c) narrow dolmen with L = 364 nm, d) s-shaped or sigmoid resonator with L = 237 nm. The |E/E0| colour scales in the 2d maps are limited to 10 for a) and 5 for b), c), and d), for clarity. The path length in the standing wave profile corresponds to the dashed line (- -) in Fig. 5(a).

Fig. 7
Fig. 7

a) Illustration of the wide dolmen under oblique illumination. b) Resonances of the wide dolmen with wv = 27.5 nm and wv = 42 nm. c) Spectrum of the resonator with L = 213 nm (m = 2).

Fig. 8
Fig. 8

a) Effect of a Cr adhesion layer illustrated by a shift in the resonant length as well as a significant weakening of the field enhancement, especially for higher orders. b) Effect of asymmetric metal thicknesses revealing a decrease in resonant length with a weakening of the field enhancement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n SPP = ( ε d + 4 ε d 2 / k 0 2 t 2 ε m 2 ).

Metrics